Grain Growth Modeling for Additive Manufacturing of Nickel Based Superalloys

H. L. Wei¹, T. Mukherjee¹ and T. DebRoy¹

¹The Pennsylvania State University, University Park, PA, 16801, USA

Why grain growth in additive manufacturing?

Calculation of accurate temperature field

3D accurate grain growth model computationally more efficient than phase field and cellular automata

6th International Conference on Recrystallization and Grain Growth Pittsburgh, PA, USA, July 17-21, 2016

Main objectives

Estimation of accurate temperature field

=> Required for grain growth and microstructure

Prediction of grain growth

=> Affects mechanical properties

Approach:

- 3D heat transfer and fluid flow model
 - => Transient temperature and the velocity field

Monte Carlo grain growth model

=> 3D grain growth based on the maximum heat flow direction

Liu et al. High Temp. Mater. Processes. 2016

Heat transfer and fluid flow model

Solve equations of conservation of mass, momentum and energy

Calculation domain: about 250,000 cells

Five main variables: three components of velocities, pressure & enthalpy

1.25 million algebraic equations (250000 x 5)

100 iteration at any time step => 0.125 billion equations/time step

1000 time step => 125 billion total equations

Manvatkar et al. J Appl. Phys. 2014

3D transient temperature distribution

Laser	Beam radius	Scanning	Layer	Substrate
power (W)	(mm)	speed (mm/s)	thickness (mm)	thickness (mm)
210	0.5	12.5	0.38	4

3D transient molten metal velocity field

Laser	Beam radius	Scanning	Layer	Substrate
power (W)	(mm)	speed (mm/s)	thickness (mm)	thickness (mm)
210	0.5	12.5	0.38	4

Experimental validation: Shape and size of deposition

Mukherjee, Zuback, De & DebRoy. Sci. Rep. (2016) www.nature.com/articles/srep19717

Solidification morphology

1 mm

2

X, mm

0

3

4

Wei et al. Acta Mater. 2016.

5

Solidification morphology during AM of IN 718

Material	Laser power (W)	Beam radius (mm)	Scanning speed (mm/s)	Layer thickness (mm)	Substrate thickness (mm)
IN 718	250	0.5	20	0.4	4

3D grain growth model: algorithm

9

Maximum heat flow direction

Monte Carlo grain growth model

Step 1

Each grid point is assigned a random orientation number between 1 and Q > 32

Step 2

Calculate the local interaction energy

$$E_1 = -J \sum_{j=1}^n \left(\delta_{S_i S_j} - 1 \right)$$

- J => positive constant to set the scale of grain-boundary energy
- $\delta \Rightarrow$ Kronecker's delta function
- Si => orientation at a randomly selected site i
- Sj => orientation of its nearest neighbors
- n => total number of the nearest-neighbor sites

Monte Carlo grain growth model

Step 3

Grain boundary migration:

- 1. Select a random site
- 2. Select the neighbors along maximum heat flow direction
- 3. Change its orientation to one of the nearest-neighbor orientations

Step 4

Calculate the local interaction energy $E_2 = -J \sum_{j=1}^{n} (\delta_{S_i S_j} - 1)$

The probability of orientation change corresponds to boundary migration

- If, $E_2 E_1 \le 0$ Probability = 1
- If, $E_2 E_1 > 0$ Probability = $e^{-(E_2 E_1)/k_BT}$

 k_B is Boltzman constant and T is temperature

3D grain growth during AM of IN 718

Material	Laser power (W)	Beam radius (mm)	Scanning speed (mm/s)	Layer thickness (mm)	Substrate thickness (mm)
IN 718	250	0.5	15	0.4	4

Spatial distribution of grain shape and size at various horizontal planes of the deposit

Spatial distribution of grain shape and size at various longitudinal planes of the deposit

— Scanning direction

X, mm

At the center of the pool

Spatial distribution of grain size

Distances for horizontal planes are measured from top surface

Distances for longitudinal planes are measured from pool center

Grain sizes are smaller at the locations away from the center of the molten pool because of the lower growth rate of grains.

Experimental validation: EBSD map of grain growth

Columnar grains curve towards the scanning direction and grow along the maximum heat flow direction

Scanning direction **↓** 1 mm -5th layer 4th layer 3rd layer 2nd layer 1st layer Substrate 200 um

Parimi et al. Mater. Character. 2014.

Material	Laser power (W)	Beam radius (mm)	Scanning speed (mm/s)	Layer thickness (mm)	Substrate thickness (mm)
IN 718	390	0.35	3.3	0.3	10

Effect of laser scanning speed on grain growth

Effect of laser power and scanning speed on grain size

Summary and conclusions

- ☆ A 3D transient heat transfer and fluid flow model is used to calculate the temperature field during the deposition.
- A Monte Carlo grain growth model is used to simulate the grain growth along the maximum heat flow direction.
- Columnar grains curve along the scanning direction to follow the maximum heat flow direction.
- Grain sizes are smaller at the locations away from the center of the molten pool because of the lower growth rate of grains.
- Higher scanning speed and lower power promotes a rapid cooling rate and therefore smaller grain size.