A quantitative approach to reduce the residual stresses and distortion in additively manufactured parts

T. Mukherjee¹, W. Zhang², and T. DebRoy¹ ¹The Pennsylvania State University, University Park, PA, 16801, USA ²The Ohio State University, Columbus, OH, 43221, USA

Why distortion and residual stresses in additive manufacturing? Calculation of accurate distortion and residual stress fields Susceptibility of different alloys to distortion and residual stresses

Funding sources: AWS research fellowship, US Department of Energy NEUP

AWS Professional Program at FABTECH, Las Vegas, NV, USA, November 16-18, 2016

Main objectives

Estimation of accurate residual stresses and distortion

- => Dimensional inaccuracy
- => Delamination, buckling, warping
- => Affect mechanical properties

Understand the relative susceptibility of different alloys to distortion

=> Printability of different alloys

Approach:

3D transient thermo-mechanical model

- => Transient temperature and the velocity field
- => Stresses and strain fields

Analytical method with non-dimensional no.

=> Compare the thermal distortion for different alloys

- [1] Leuders et al. Int. J. Fatigue. 2013
- [2] Edwards et al. J. Manuf. Sci. Eng. 2013

Heat transfer and fluid flow model

Solve equations of conservation of mass, momentum and energy

Calculation domain: about 250,000 cells

Five main variables: three components of velocities, pressure & enthalpy

1.25 million algebraic equations (250000 x 5)

100 iteration at any time step => 0.125 billion equations/time step

1000 time step => 125 billion total equations

Manvatkar et al. J Appl. Phys. 2014

3D transient temperature distribution

Laser	Beam radius	Scanning	Layer	Substrate
power (W)	(mm)	speed (mm/s)	thickness (mm)	thickness (mm)
210	0.5	12.5	0.38	4

3D transient molten metal velocity field

Laser	Beam radius	Scanning	Layer	Substrate
power (W)	(mm)	speed (mm/s)	thickness (mm)	thickness (mm)
210	0.5	12.5	0.38	4

Experimental validation: Shape and size of deposition

Mukherjee et al. Sci. Rep. 2016 www.nature.com/articles/srep19717

Experimental validation: Thermal cycle

Liquidus temperature = 1878 K

Material	Laser power (W)	Beam radius (mm)	Scanning speed (mm/s)	Layer thickness (mm)	Substrate thickness (mm)
Ti-6Al-4V	2000	1.5	10.6	0.9	10

Mukherjee et al. Comput. Mater. Sci. 2017.

7

Calculation of distortion and residual stresses

Mukherjee et al. Comput. Mater. Sci. 2017.

Calculated thermal strain from temperature field

Calculated residual stresses

How residual stresses evolve during cooling?

Experimental validation of residual stresses

Mukherjee et al. Comput. Mater. Sci. 2017.

Effects of layer thickness and heat input

- => Residual stresses can be decreased as much as 30% by doubling the number of layers to build the same height.
- => Doubling the heat input reduces the residual stresses by about 20% and enhances the distortion by about 2.5 times.
- => An appropriate heat input should be selected by trading off both distortion and residual stresses.

Mukherjee et al. Comput. Mater. Sci. 2017. 13

Residual stresses: Inconel 718 vs Ti-6Al-4V

Mukherjee et al. Comput. Mater. Sci. 2017.

14

Measure of thermal distortion: Strain parameter

$$\varepsilon^* = \frac{\beta \Delta T}{EI} \frac{t}{F \sqrt{\rho}} H^{3/2}$$

- \succ ϵ^* is obtained by dimensional analysis
- ε* provides insight to thermal strain and distortion in AM
- ε* does not consider any plastic deformation

Variables	Symbols
Thermal expansion coefficient	β
Temperature difference	ΔT
Fourier number	F
Heat input per unit length	Н
Total time	t
Flexural rigidity of substrate	EI
Density	ρ

Mukherjee et al. Scripta. Mater. 2017.¹⁵

Thermal strain vs. Fourier number

> Low Fo => High heat storage => High thermal strain and distortion

Low El => Less rigid substrate => High thermal strain and distortion Mukherjee et al. Scripta. Mater. 2017. 16

Thermal strain vs. Marangoni number

Marangoni number =

$$Ma = -\frac{d\gamma}{dT} \frac{L\Delta T}{\eta \alpha}$$

Variables	Symbols
Surface tension gradient	dy/dT
Pool length	L
Temperature gradient	ΔT
Viscosity	η
Thermal diffusivity	α

$$\varepsilon^* = \frac{\beta \Delta T}{EI} \frac{t}{F \sqrt{\rho}} H^{3/2}$$

High Ma => High convective flow inside pool => Large pool => High strain

> Low density (ρ) => High peak temperature => High strain and distortion Mukherjee et al. Scripta. Mater. 2017. 17

Summary and conclusions

- ☆ A 3D transient heat transfer and fluid flow model is used to calculate the temperature field during the deposition.
- ✤ A thermo-mechanical model using Abaqus is used to simulate the residual stress and distortion.
- Lower layer thickness and heat input selected by trading off both distortion and residual stresses are useful to fabricate dimensionally accurate part with minimum residual stress.
- Non-dimensional strain parameter is used to understand the relative susceptibility to distortion of different alloys.
- High Fourier no. (high heat dissipation and low heat storage) and low Marangoni no. (less convective flow inside pool) can effectively reduce thermal distortion.