
RESEARCH ARTICLE
www.advancedscience.com

Machine Learning Customized Novel Material for
Energy-Efficient 4D Printing

Chaolin Tan,* Qian Li, Xiling Yao,* Lequn Chen, Jinlong Su, Fern Lan Ng, Yuchan Liu,
Tao Yang,* Youxiang Chew,* Chain Tsuan Liu, and Tarasankar DebRoy

Existing commercial powders for laser additive manufacturing (LAM) are
designed for traditional manufacturing methods requiring post heat
treatments (PHT). LAM’s unique cyclic thermal history induces intrinsic heat
treatment (IHT) on materials during deposition, which offers an opportunity
to develop LAM-customized new materials. This work customized a novel
Fe–Ni–Ti–Al maraging steel assisted by machine learning to leverage the IHT
effect for in situ forming massive precipitates during LAM without PHT. Fast
precipitation kinetics in steel, tailored intermittent deposition strategy, and
the IHT effect facilitate the in situ Ni3Ti precipitation in the martensitic matrix
via heterogeneous nucleation on high-density dislocations. The as-built steel
achieves a tensile strength of 1538 MPa and a uniform elongation of 8.1%,
which is superior to a wide range of as-LAM-processed high-strength steel. In
the current mainstream ex situ 4D printing, the time-dependent evolutions
(i.e., property or functionality changes) of a 3D printed structure occur after
part formation. This work highlights in situ 4D printing via the synchronous
integration of time-dependent precipitation hardening with 3D geometry
shaping, which shows high energy efficiency and sustainability. The findings
provide insight into developing LAM-customized materials by understanding
and utilizing the IHT-materials interaction.
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1. Introduction

The materials, structure, process, and per-
formance are the critical aspects of enhanc-
ing the multifunctionality of additive man-
ufacturing (AM) processed components.[1,2]

Thus, the booming of new materials for
AM is essential to advance the maturity and
sustainability of AM technologies.[3] How-
ever, existing commercial metallic powders
for AM are designed and optimized for the
conventional processing route (e.g., casting,
hot isostatic pressing, spark plasma sin-
tering, etc.) and might not be optimal for
AM. Moreover, AM-processed commercial
metallic materials mostly require post heat
treatments (PHT) to achieve good perfor-
mance, which costs energy and emits CO2.
The metallurgical industry is one of the
largest emitters of greenhouse gases,[4] of
which heat treatment takes up a significant
portion.[5] Hence, sustainable alloy design
to exempt PHT is a good strategy for mak-
ing “green” metallic materials.

Laser additive manufacturing (LAM)
typically includes laser-directed energy

deposition (LDED) and laser powder bed fusion (LPBF), which
forms objects incrementally from point to line, layer, and finally
to 3D component using the high-energy laser to melt powder
particles following a pre-designed computer-aided design (CAD)
model and toolpath.[6] The time-temperature profile experienced
by a part produced by LAM is very different from that produced by
conventional manufacturing.[7] During the LAM process, the ma-
terial will experience unique thermal histories, including cyclic
rapid heating and cooling. After the deposited material rapidly
cools down from the liquid state, it will experience cyclic reheat-
ing when depositing adjacent tracks and subsequent layers.[8]

This cyclic reheating induces many short temperature spikes,
leading to an intrinsic heat treatment (IHT) to the as-deposited
material.[9]

The IHT effect, when appropriately controlled, may trigger
clustering or nucleation of hardening precipitates during the
LAM process without additional PHT. For instance, the IHT ef-
fect on the deposited materials promoted the intrinsic forma-
tion of high-density 𝛽′-NiAl nanoparticles in LDED Fe-19Ni-xAl
alloy[8] and nanosized 𝜂-Ni3Ti precipitates in LDED Fe-19Ni-5Ti
alloy.[9] Apart from steels, the precipitates triggered by the IHT
effect were also reported in LDED of commercial magnesium
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Figure 1. The schematic of machine learning (ML) assisted composition design of Fe–Ni–Ti–Al novel maraging steel (NMS). a) Feature selections in
the design of NMS, b) data collections from Thermo-Calc software and the correlation matrix of the input composition (Ni, Ti, and Al) and output
(Ni3Ti precipitate and Laves phase weight fractions) in the surrogate models, c) ML by various algorithms (Random Forest is the most accurate one), d)
composition optimization for the allowable range of alloying elements, e) time-dependent dynamic precipitation behaviours of different compositions
at 490 °C (the balance is Fe), and f) final decisive composition as Fe-20.8Ni-6.2Ti-1.7Al (wt%) along with the morphology and elemental mapping of the
produced powder.

and aluminum alloys (e.g., in situ formation of 𝛽′-Mg7Gd precip-
itate in Mg–Gd magnesium alloy[10] and Al3(Sc, Zr) precipitates
in Al–Sc–Zr aluminum alloy[11]). Further straightforward inves-
tigation and understanding of solid-state thermal cycling-driven
evolution of precipitates have been conducted recently, where the
precipitation behavior of oxide and nonoxide precipitates in an
LDED-built 316L austenitic steel during cooling/heating cycles
(with cooling and heating rates up to 4000 k s−1) were in situ
observed by using transmission electron microscopy.[12] How-
ever, this in situ precipitate behavior was observed in commer-
cial materials, and there lacks work to customize new materials
by fully exploiting the IHT to exempt PHT. To this end, the de-
velopment of LAM-customized new materials with in situ pre-
cipitation strengthening capability to potentially eliminate PHT
by utilizing unique thermal history in LAM deposition provides
insights into the booming of new materials for LAM.

Maraging steel is a martensitic age-hardening advanced steel
which is strengthened by the precipitation of intermetallics (e.g.,
𝜂-Ni3Ti, Ni3Mo, Ni3Al, NiAl, etc.) after heat treatment at about
450–550 °C for 3–9 h.[8,13] As a typical precipitation hardening ul-
trahigh strength steel, maraging steels are generally used as land-
ing gear, helicopter undercarriages, rocket motor cases, and other
applications which require a high strength-to-weight ratio.[14] The
Ni3Ti is the predominant precipitate in Ti-containing marag-
ing steels due to its high precipitation kinetics.[13,15] Hence, the
Ni3Ti could be the promising precipitate in materials triggered by
the IHT effect. To design lightweight maraging steel with Ni3Ti
precipitation, the Fe–Ni–Ti–Al system was selected. Machining

learning (ML) is an artificial intelligence technique that enables
a machine or system to learn from data and make reliable de-
cisions or predictions,[16,17] which has demonstrated promising
capability in accelerating the design and discovery of new ad-
vanced materials.[18,19] Hence, to fully utilize the thermal history-
material interaction during LAM, this work implements ML to
discover a Fe–Ni–Ti–Al novel maraging steel (NMS) with fast pre-
cipitation kinetics, which gains in situ precipitation hardening
capability during LAM and eliminates the time-consuming PHT.
This ML customized NMS is an environmental-friendly and sus-
tainable material since it could reduce energy consumption and
CO2 emission associated with materials PHT.

2. Machine Learning Assisted Material
Customization

The computational workflow of designing the new Fe–Ni–Ti–Al
precipitation hardening NMS is summarized in Figure 1. The
phase contents (e.g., Ni3Ti precipitate and Laves phase) and crit-
ical temperatures (e.g., martensite transformation temperature
and solidification range) were selected as the key features for ther-
modynamics modelling and alloy composition optimization (Fig-
ure 1a). In the data collection stage, a Design for Computer Exper-
iment (DoCE) table was first generated with many randomized
compositions as inputs. After that, the CALculation of PHAse Di-
agrams (CALPHAD) models were created and solved in Thermo-
Calc software automatically in batches for all compositions within
the DoCE table (Figure 1b). The CALPHAD results obtained in
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Figure 2. Performance comparison of different ML models for Laves phase and Ni3Ti precipitate surrogate modelling with a) coefficient of determination
(i.e., R2 score) and b) mean absolute error (MAE). Ground truth data plotted against predicted data points by RF regression model for c) Laves phase
and d) Ni3Ti precipitate prediction, demonstrating great capability of predicting phase content given the alloy composition. (Note: the higher R2 score
indicates better performance, while a lower MAE value means better performance.).

the DoCE were used to train surrogate models by ML, enabling
rapid exploration of the alloy design space in the subsequent com-
position optimization stage. The surrogate models took any alloy
composition as input and predicted the values of the key features
(e.g., Laves phase and Ni3Ti precipitate).

In the surrogate modelling, four ML algorithms, i.e., Decision
Tree (DT), K-nearest Neighbour (KNN), Adaptive Boosting (Ad-
aBoost), and Random Forest (RF), were trained and tested. Com-
parison of tested performance of various ML models for Laves
phase and Ni3Ti precipitate prediction are shown in Figure 2a,b.
The most accurate one, i.e., RF, in this case, was selected (Fig-
ure 1c) as the surrogate model. The ground truth values plot-
ted against predicted values by the RF regression model in Fig-
ure 2c,d yield R2 scores greater than 99%, showing an excellent
capability of predicting values close to the ground truth values of
Laves phase and Ni3Ti precipitate contents given a particular alloy
composition. The ML model performance evaluations for other
surrogate models (i.e., KNN, DT, and AdaBoost) are presented
in Figure S1 in the Supporting Information. More details on ML
model training, hyperparameter tunings, and data descriptions
are provided in the Text (Supporting Information) titled “Discus-
sion on the machine learning algorithms for surrogate models”.

Once the surrogate models were established, they were used
to formulate the composition optimization problem. The de-
sign space or the allowable range of the alloying elements (i.e.,
[wt% Timin, wt% Timax], [wt% Nimin, wt% Nimax], [wt% Almin, wt%
Almax]), the constraint functions (i.e., wt% Al < wt% Ti; Laves <

Lavesmax wt%), and the objective function (i.e., maximizing Ni3Ti
and minimizing Laves content) were specified in the optimiza-
tion problem (Figure 1d). The Ni content in commercial C300
maraging steel (CMS) is about 18 wt%.[13] To increase the frac-
tion of Ni3Ti, the amount of Ni in the customized steel should
be >18 wt%. The high Ni content ensures the decomposition
of austenite and the formation of only martensite, even at low
cooling rates. However, there is also an upper limit for Ni con-
tent since the high Ni will increase the instability of martensite
at elevated temperatures and promote the formation of retained
austenite. Besides, as shown in Figure S2a (Supporting Infor-
mation), the martensite transformation temperature decreases
with increasing Ni content. To secure the martensitic matrix, the
martensite transformation finish temperature (i.e., when 90%
martensite is formed) is deemed reliable at a value higher than

200 °C, considering the heat accumulation during multiple layers
laser depositions. Furthermore, the Schaeffler–Delong diagram
in Figure S2b (Supporting Information) also indicates that the
high Ni content will increase the austenite phase, as referred to
as commercial C300 maraging steel. Hence the upper limit for
the Ni is set as 21 wt%, i.e., 18 < Ni < 21 wt%. The correlation
matrix in Figure 1b indicates that the increase of Ti will increase
the Fe2Ti Laves phase fraction, and the high Al content will sup-
press the formation of Ni3Ti precipitate. Hence, the upper limit
of Ti was set as 10 wt%, considering that the stoichiometric ratio
of 3:1 for Ni:Ti could benefit Ni3Ti formation. Thus, the Ti con-
tent is set as 5 < Ti < 10 wt%. For the volatile Al, the minimum
content is set as 1 wt%, and the up limit is designed as less than
Ti, i.e., 1 < Al < 5 wt%.

A population-based metaheuristic algorithm, i.e., Differential
Evolution,[20] was used to solve the optimization problem. By
adjusting the settings in the above design space and constraint
functions, one can obtain a shortlisted set of compositions. And
then, by verifying and comparing these shortlisted compositions
in material kinetics simulation using precipitation module “TC-
PRISMA” in Thermo-Calc software, one can estimate the time-
dependent dynamic precipitation behaviors (e.g., Ni3Ti precipi-
tation rate and maximum content as shown in Figure 1e), thus
reaching the final composition decision Fe-20.8Ni-6.2Ti-1.7Al
(wt%). The morphology along with elements mapping of the pro-
duced powder are included in Figure 1f, which is in a good spher-
ical shape with an average particle size of about 37 μm (Figure
3a). This composition enables rapid precipitation of Ni3Ti with
an extremely high density of 3.3×1024 m−1 (approaching peak
density) after only 15 min of heat treatment at 490 °C. The brittle-
ness and printability (e.g., cracking tendency) of this customized
NMS are also evaluated and compared with the CMS. The solid-
ification temperature range (critical indicator for solidification
cracking) of NMS shares a similar value with that in CMS, as
shown in Figure S2c (Supporting Information), suggesting a low
cracking possibility during LDED since the CMS demonstrated
excellent weldability.[13] Furthermore, the predicted Laves phase
is below 2 wt% in this NMS, which is slightly lower than the C300
CMS (see Figure S2d in the Supporting Information). Details
on the composition optimization problem and solution are pre-
sented in the Text (Supporting Information) titled “Discussion
on the alloy composition optimization”. The Python program for
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Figure 3. Overview of the machining learning customized powder, LDED processes and mechanical properties of the customized Fe–Ni–Ti–Al NMS. a)
Powder particle size distributions. b) Cross-sectional view, c) inverse pole figure, and d) phase distribution map of powder. e) Illustrative comparison
between 3D printing (3DP) of CMS followed by PHT to form precipitates, and 4D printing (4DP) of ML customized NMS with in situ formed massive
precipitates incited by IHT without PHT. Spatial morphologies of LDED-processed NMS by f) continuous deposition and g) interlayer pause (ILP)
deposition strategies. h) Time-dependent thermal histories in continuous and ILP deposition strategies (the Ms = 182 °C). i) Tensile engineering stress–
strain curves of NMS (as-built) and CMS (repeated tensile tests are plotted in Figure S4a in the Supporting Information). j) Deformation behaviour of
NMS by in situ DIC monitoring.

ML surrogate modelling and alloy composition optimization is
available in the Source Code in the Supporting Information.

3. Results and Discussion

3.1. Conception and Overview of 4D Printing of Customized Steel

To evaluate the densification quality of the powder, the cross-
sectional view of the powders is displayed in Figure 3b, which
reveals high-density powder particles without evident internal de-
fects. The EBSD analysis of the powder particles is displayed in
Figure 3c,d. The inverse pole figure of the powder in Figure 3c
suggests a random grain orientation without evident texture. The
phase distribution map in Figure 3d indicates that the powder has
major body-centered cubic (BCC) martensite with minor face-
centered cubic (FCC) austenite segregation in the cellular struc-
ture boundaries.

As illustrated in Figure 3e, the LDED-processed CMS parts
need to undergo age treatment for 3–9 h to form the precipitates
for strengthening.[13] In contrast, the ML customized NMS can in
situ form massive precipitates without undergoing PHT, suggest-

ing a synchronous integration of 3D geometry shaping with heat
treatment. This integration can be considered 4D printing since
the time-consuming aging heat treatment (time dimension) was
incorporated during 3D printing (i.e., 3D geometry + time di-
mension). The classic concept terms 4D printing as: the shape,
property, or functionality of a 3D printed structure can change
as a function of time when subjected to different environmen-
tal stimuli (e.g., heat, light, water, etc.).[21] Current mainstream
4D printing can be termed ex situ 4D printing since the time-
dependent evolutions occur after 3D objective formation rather
than synchronously.[22] In contrast, this work highlights in situ
4D printing via in situ integration of time-dependent evolution
(i.e., precipitation) with 3D geometry shaping. Two key factors
to accomplish this in situ 4D printing: (i) The unique thermal
history leads to an IHT effect on the as-deposited material.[9] (ii)
The ML-customized NMS has a fast kinetic of precipitation with
a high precipitation rate (Figure 1e), which enable the formation
of precipitates within a short time.

As thermal history is tunable by varying the processing strate-
gies, two deposition strategies (i.e., continuous and interlayer
pause (ILP), as described in experimental section) were designed.
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The schematics of two deposition strategies and the spatial mi-
crostructures of the deposited samples are displayed in Fig-
ure 3f,g. The continuous sample shows uniform macrostructure,
while the ILP sample displays layerwise features consisting of
alternated dark and white layers. The distinct microstructures
are attributed to the different thermal histories in two deposition
strategies, as shown in Figure 3h. The continuous deposition led
to thermal accumulation in the deposited materials, which makes
the temperature in solidified material higher than the martensite
start temperature MS (i.e., 182 °C as shown in Figure S3 in the
Supporting Information). In contrast, the ILP enables the solid-
ified material to cool down below Ms, which means more BCC
martensitic phases will be formed in the ILP sample.

The representative engineering stress–strain curves of the 4D
printed NMS and 3D printed CMS are displayed in Figure 3i,
with the correlative results being summarized in Table S2 in
the Supporting Information. The NMS deposited by ILP shows
higher yield strength (YS) and ultimate tensile strength (UTS)
than the continuous sample while sharing similar elongation
(El). Besides, the as-built NMS, especially the ILP sample, shows
much higher UTS (more than 400 MPa) than the as-built CMS.
Notably, the uniform El (more important than break elongation
for engineering applications) of the as-built NMS is also much
higher than that of the as-built and post aged CMS. The achieved
mechanical properties of NMS are also compared with the AM-
processed CMS in the literature (see Figure S4b in the Support-
ing Information). The as-built CMS has a UTS below 1.25 GPa
in general. Although aging PHT can enhance the UTS of CMS
up to 2.2 GPa, their uniform El and break El are generally be-
low 5% and 5.6%, respectively.[23–28] In contrast, the 4D printed
NMS achieved a UTS of about 1.54 GPa alongside an El of 8.1%,
highlighting the superior strength-ductility combination to CMS.
Figure 3j exhibits the deformation behavior of the NMS sample
observed by digital image correlation (DIC) at different global
strain stages. The inhomogeneous deformation with multiple
strain localization bands is observed when the strain reaches 3%
and higher. This is distinct from uniform deformation materi-
als, whereby higher strain localizes only near the necking region
prior to material fracture.

3.2. Microstructures and In Situ Precipitation Mechanisms

Overall, the LDED-processed NMS displayed multiscale hierar-
chical microstructures. In the macro-scale, there is an alternating
distribution of dark and white layers in the entire sample (Figure
4a). Within the layers, there are periodic melt pools. Upon ex-
amination within the melt pools, there are cellular and dendritic
structures with size/arm spacing below 10 μm, which were ob-
served in both dark and white regions of the LDED-processed
NMS sample. The spatial phase distributions are illustrated in
Figure 4b, in which the BCC-rich regions match with the dark
layers. The alternating BCC-rich and FCC-rich in different de-
position layers form macro-scale layerwise dual-phase. Interest-
ingly, a closer view of the BCC-rich layer revealed microscale FCC
and BCC dual-phase microstructures. The layerwise heterostruc-
tured phases could be attributed to the different cooling rates dur-
ing material solidification (as illustrated in Figure S5 in the Sup-
porting Information), where the melt pool boundaries and layer

interfaces experienced a higher cooling rate than other regions.
The high cooling rates benefit the formation of the BCC phase.
The dislocation features in bulk ILP samples were examined by
TEM (Figure 4c), which reveals high-density dislocation tangles
due to the intensified residual stress caused by the high cooling
rate associated with the LDED process, especially with the ILP
deposition strategy.

To investigate the in situ precipitation behavior, the TEM foils
were extracted from the dark and white regions in the ILP sam-
ple (as illustrated in Figure 4a and Figure S6 in the Supporting
Information) and from a powder particle by FIB for comparison.
TEM morphologies of the powder (Figure 4d) and white region
(Figure 4e) of the ILP sample suggest the absence of precipi-
tate. In contrast, massive acicular precipitates with a length of
about 5–50 nm are observed in the dark region of the ILP sam-
ple, as shown in Figure 4f,g. The inset SADP in Figure 4g shows
super-lattice diffraction spots, where the large spots come from
BCC-Fe while the weak spots are from the precipitates. The low-
magnification observations on the dark region in Figure S7 (Sup-
porting Information) indicate these precipitates are prevalent in
both the dislocation accumulation and dislocation-lean regions
in the BCC-Fe matrix (Ni-rich martensite), i.e., in situ formation
of precipitates in the entire dark region in ILP sample. The EDX
mapping in Figure 4h indicates that the precipitates are rich in
Ti and Ni elements, which is likely to be Ni3Ti since the close-
packed hexagonal (hcp) 𝜂-Ni3Ti is the main precipitate phase re-
sponsible for the strengthening of the maraging steels containing
Ti.[14,15] Further analysis of acicular precipitates in Figure 4i by
fast Fourier transform (FFT) and HRTEM analysis in Figure 4j
confirm the Ni3Ti precipitates. Close STEM observation on the
precipitate–matrix interface is displayed in Figure 4k, where the
BCC-Fe matrix and hcp-structured precipitate are identified by
the FFTs, and a transitional interface with good coherency be-
tween them was observed. The HAADF-STEM in Figure 4l (taken
from zone B in Figure 4k) shows the Ti and Ni atoms distribu-
tions observed from the [0001] zone axis, confirming the hcp-
Ni3Ti precipitate. Note that the dark atoms in Figure 4l are sup-
posed to be Ti since contrast in HAADF-STEM imaging origi-
nates from low atomic numbers (Z).

The in situ formation process and mechanism of Ni3Ti precip-
itates are illustrated in Figure 4m. There are several contributing
aspects to accomplishing this in situ precipitation. (i) Materials
and precipitation kinetics: The ML-optimized materials compo-
sition increased precipitation rate and density (Figure 1), which
facilitates instant precipitation without PHT. Furthermore, the
interaction between Ni and Ti to form hexagonal 𝜂-Ni3Ti is the
most rapid reaction during aging, and Ni3Ti is the main precipi-
tate phase responsible for strengthening the maraging steels con-
taining Ti.[14,29,30] Some maraging steels can be hardened even
only after 5 s at 550 °C HT, showing an increase in hardness
by 160% (i.e., from 310 to 490 VHN) due to the coclustering
between Ti–Ni, Ti–Al, and Ti–Mn.[14] (ii) Process and thermal
history control: During LDED, the IHT effect and thermal accu-
mulation will affect the microstructures significantly. The ther-
mal accumulation in the continuously deposited sample inhibits
the solidified material from rapid cooling to a temperature below
the Ms (i.e., 182 °C), suppressing martensite formation. In con-
trast, the ILP deposition strategy enabled the solidified materials
to cool down to Ms, facilitating martensite formation. Note that
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Figure 4. Microstructure analysis of the powder and LDED-processed NMS by ILP deposition strategy. a) Spatial distribution of dark and white layers
(FIB extracted regions for TEM testing are illustrated). b) Spatial distribution of BCC and FCC phases. c) TEM image shows high-density dislocations
in the ILP sample. d) Powder and e) white regions of the ILP sample show no evidence of precipitates. f) TEM observations on the dark regions show
massive precipitates. g) Zoom-in image of acicular precipitates and correlative SADP. h) EDS mapping analysis on the precipitates. i,j) HR-TEM analysis
on the Ni3Ti precipitates, where (j) is a closer view of the labelled zone in (i). k) High-resolution HAADF STEM images and FFTs of FCC-Fe matrix
and round precipitate. l) High-resolution HAADF-STEM image showing periodic Ti and Ni atoms of Ni3Ti. m) Schematic shows in situ precipitation
behaviour and mechanism.

the martensitic matrix is essential for the precipitate formation
as it contains high-density dislocations.[13] The subsequent layers
deposition induced cyclic IHT to the solidified materials, which
contains multiple temperature spikes up to 550 °C (Figure 3h),
reaching the aging temperature (about 500 °C as parsed by DSC
in Figure S8 in the Supporting Information). Notably, the tem-
perature spikes coupled with thermal accumulation in the con-
tinuous deposition are likely to promote the austenite reversion

since the attached temperature can reach the complete BCC to
FCC transformation temperature (around 640 °C as in Figure S8
in the Supporting Information), which also reduces the FCC frac-
tion in the material. (iii) Solidification and dislocation: The LDED
has a very high cooling rate of 103–105 k s−1,[1] and the ILP de-
position further enhances the cooling rate of materials, which
induces high-density dislocations (as disclosed in Figure 4c) in
the solidified materials. The dislocations will interact with solute
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Figure 5. a) The illustration shows the locations of micro-pillars in the ILP sample. b,c) Morphologies of micropillars extracted from the white (pillar 1)
and dark (pillar 2) regions, respectively. d) Compressive stress–strain curves of pillars taken from the ILP sample (white and dark regions) and raw powder.
e,f) Fracture morphologies of the powder and dark region micropillars, respectively. g) Tensile properties of 4D printing NMS in this work compared
with those of a wide range of AM-processed high-strength steels (all in as-built condition), including: (i) high-strength low-alloy steels (HSLA), such
as 24CrNiMo,[34] AF9628,[35] and HY100;[36] (ii) precipitation hardening steels (PHS), such as 17-4PH,[37,38] 15-5PH,[39,40] and CX SS;[41,42] (iii) high-
strength stainless steels, such as AISI 420,[43,44] AISI 4130,[45] and AISI 4340;[46] (iv) tool steel (e.g., H13[47]), (v) reduced-activation ferritic/martensitic
(RAFM) steel (e.g., CLF-1[48]); and (vi) maraging steels, such as Fe19Ni5Ti[9] and C300MS.[23–28]

and precipitate nucleation. (iv) Heterogeneous nucleation: Prior
to the nucleation of these precipitates, there is usually a tendency
for solute segregation at the dislocations. The crystal defects (e.g.,
dislocations and grain boundaries) change the solute diffusion
kinetics since the dislocations and grain boundaries are fast dif-
fusion paths.[31] Hence, nucleation at structural defects occurs
faster than homogeneous nucleation, and heterogeneous precip-
itation facilitates the formation of more stable phases. The dislo-
cations favor nucleation by causing a bias in the energy balance
and reducing the energy barrier.[32] The dense dislocations in the
ILP sample provided more nucleation sites for Ni3Ti precipitates.
Besides, the ILP sample experienced a higher cooling rate (espe-
cially for the interfacial regions) than the continuous deposition,
which could enhance the degree of undercooling of the melt pool,
and also enhance the nucleation rate of the precipitates.[33] Con-
sequently, the interplay between materials composition, LDED
deposition strategy, high-density dislocation martensitic matrix
and IHT effect facilitated the in situ formation of Ni3Ti nanopre-
cipitates via heterogeneous nucleation.

3.3. Correlation Between Precipitation and Mechanical Property

The micropillar compression on localized regions of the NMS
bulk material and powder was conducted to further investigate
the effect of in situ formed precipitates on mechanical properties.
As illustrated in Figure 5a, the micropillars (Figure 5b,c) were ex-
tracted from the dark and white regions in the bulk ILP sample
(positioned by Vickers indentations as shown in Figure S6g in
the Supporting Information), together with the micropillar of the
NMS powder particle (Figure 5d) by FIB. The measured compres-
sive stress-strain curves are displayed in Figure 5d, demonstrat-
ing that the dark region achieved a higher strength than both the

white region and powder. Notably, the white region shows a sim-
ilar strength to the powder due to the lack of precipitates (see Fig-
ure 4). The higher strength associated with the dark region could
originate from the high-density dislocations and precipitates as
they could strengthen the material. Hence, understanding local-
ized mechanical properties are essential to clarify the in situ pre-
cipitation behavior and its effect on mechanical properties. The
pillars from the powder (Figure 5e) and dark region (Figure 5f)
both exhibit ductile fracture behavior without evident shearing
cracks, which suggests the nanoprecipitates strengthened mate-
rials without an evident increase in brittleness.

3.4. Mechanism of High Strength-Ductility Synergy

The achieved mechanical properties of NMS in this work are
compared with a wide range of AM-processed high-strength
steels (HSSs) in as-built conditions without PHT. It is chal-
lenging for HSSs to achieve UTS higher than 1.5 GPa without
PHT. The customized NMS exhibited UTS higher than 1.5 GPa
and a uniform El higher than 8%, which is one of the excellent
balances of strength-uniform El among different types of steels,
as summarized in Figure 5g. The underlying mechanisms
accounting for high strength are analyzed in the Experimental
Section. The fine lath martensites (see Figure S7a in the Sup-
porting Information) led to grain boundary strengthening (𝜎g)
following the Hall–Petch mechanism,[49] contributing about
285 MPa to the yield strength. Additionally, as disclosed by TEM
results (Figure 4c), the high dislocation density (𝜌) in the NMS
sample (calculated as 𝜌 = 1.77 × 1014 m−2) also contributed about
307 MPa to the YS via dislocation strengthening (𝜎d) following
the Taylor hardening law.[50] Furthermore, the 5–50 nm sized
Ni3Ti precipitates (Figure 4g) are strong enough to resist the
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dislocations’ movement, strengthening the matrix following the
Orowan bowing mechanism.[15] The strengthening by Ni3Ti is
calculated as about 1118 MPa, and the dark region takes up about
38% of the whole sample (Figure 4). Hence, the contribution
of Ni3Ti strengthening in the entire sample is about 425 MPa.
Consequently, the total strengthening is calculated as 1017 MPa,
which is close to the measured YS of 966 MPa.

The multiple deformation bands (also considered as Luders
band) in NMS (see Figure 3j) during tensile are feasible in de-
laying the necking and improving the ductility.[51] Besides, the
dual-phase structures could also experience the transformation-
induced plasticity (TRIP) effects during tensile tests, where the
FCC austenite could transform to BCC martensite transforma-
tion upon deformation and contribute to El improvement.[52]

This was demonstrated by Figure S9 (Supporting Information),
where the BCC phase fraction increased after the fracture com-
pared with the undeformed condition. Furthermore, the syner-
getic deformation and dynamic strain partition between the soft
austenite and hard martensite regions could suppress the strain
localisation at the phase interface, which retards the crack initia-
tion and contributes to the large uniform El.[53]

4. Conclusions

In summary, this work customized a novel maraging steel by ma-
chine learning, which enabled the in situ formation of precip-
itates during LDED without needing PHT. The ILP deposition
strategies promoted the formation of a martensitic matrix with
high-density dislocations and created a hierarchical dual-phase.
The fast precipitation kinetics of the material and the unique IHT
effect in LDED promoted in situ precipitation of massive nano-
Ni3Ti. The localized mechanical properties evaluated by micropil-
lar compressions demonstrated that the in situ formed Ni3Ti pre-
cipitates enhanced the strength of LDED-processed NMS com-
pared to the feedstock powder. The as-built NMS achieved ten-
sile strength of about 1.54 GPa along with a uniform elongation
of 8.1%, which is superior to a wide range of as-AM-processed
high-strength steels. This work highlighted the potential ap-
proach to developing high-performance metals by leveraging the
unique thermal history of laser AM, thus further boosting AM-
customized new materials with improved functionality and sus-
tainability.

5. Experimental Section
Feedstock Powder Material: The machine learning (ML) designed Fe-

20.8Ni-6.2Ti-1.7Al (wt%) novel maraging steel (NMS) powder was pro-
cessed by gas atomization. As summarized in Table S1 (Supporting In-
formation), the measured compositions of the gas-atomized powders by
inductively coupled plasma atomic emission spectroscopy (ICP-AES) are
Fe-21.1Ni-6.3Ti-1.3Al (wt%), which is close to the designed value with mi-
nor deviation. The oxygen (O) and carbon (C) of the powder, as measured
by ICP-AES, are 0.024 and 0.012 wt%, respectively. The powder particle size
distributions were measured by a laser scattering particle size analyzer.
The D10, D50, and D90 of the powder are 26, 37, and 55 μm, respectively.
The cross-sectional view of the powders was observed by field emission
scanning electron microscope (FE-SEM) and electron back-scatter diffrac-
tion (EBSD) analysis to examine powder densification, grain orientation,
and phase distributions. The martensite start temperature (Ms) of this
NMS is measured by using a Dilatometer experiment using the heating

and cooling rates of 10 k min−1. The commercial C300 maraging steel
(CMS) with a composition of Fe-18.3Ni-9.1Co-4.9Mo-0.75Ti-0.1Si-0.09Cr-
0.04Mn-0.01C, wt%) and with an average particle size of about 40 μm, was
also processed by LDED for benchmarking.

Additive Manufacturing: The customized powder was processed
by using the powder-blown LDED system developed by the Singapore
Institute of Manufacturing Technology (SIMTech). The optimized LDED
process parameters for NMS are laser power 905 W, scan speed 1000 mm
min−1, hatch space 0.65 mm and powder feeding rate 2.3 g min−1. A
raster laser scan pattern with 90° interlayer rotation was used, and the
resultant layer thickness is about 0.4 mm. Almost fully dense NMS blocks
with a relative density ≥99.9% were obtained. The bulk NMS samples
for microstructures observation and mechanical properties testing were
deposited in two strategies: (i) continuous deposition strategy, i.e.,
without pause between layers, and (ii) interlayer pause (ILP) deposition
strategy, i.e., implement a pause every layer to enable the deposited
materials to cool down to 50–60 °C. The thermal histories in these two
LDED deposition strategies were recorded by a thermocouple attached
to the edge of the first deposited layer. The optimized LDED process
parameters for CMS, i.e., laser power, scan speed and hatch space,
for CMS are 850 W, 1200 mm min−1 and 0.8 mm, respectively. The
LDED-built CMS was aged at 490 °C for 4 h in a resistance furnace for
precipitation hardening, followed by cooling in the air.

Microstructural Characterization: The as-built samples were cut along
the Z (build direction), Y, and X directions to study the macro-
morphologies using an OLYMPUS MX51 optical microscope (OM). The
microstructures were observed by the FEI Helios NanoLab 600i SEM sys-
tem (with energy dispersive spectrometer (EDS)) and EBSD along the
build direction. The EBSD tests were conducted by an Oxford EBSD de-
tector, using a step size of 50 nm at 20 kV. The inverse pole figure, band
contrast maps, and phase distribution maps were analysed by commer-
cial HKL Channel 5 software. Transmission electron microscope (TEM)
samples were extracted from the specified regions of the as-built samples
using an FEI Scios dual-beam Focused Ion Beam (FIB) system. An FEI Ta-
los F200X TEM system operating at 200 kV was used to examine the mul-
tiscale precipitates using selected area diffraction pattern (SADP), scan-
ning transmission electron microscopy (STEM), and energy-dispersive X-
ray (EDX) spectroscopy analyses. The high-resolution high-angle annular
dark field (HAADF) STEM observations were conducted on an FEI Titan
Themis G2 instrument equipped with double spherical aberration correc-
tors for probe forming and image forming lenses operated at 300 kV. The
phase transformation temperature of NMS powder was identified by using
a differential scanning calorimetry (DSC) system.

Mechanical Testing: The microhardness was tested by a MATSUZAWA
MMT-X3 microhardness tester using a load of 100 gf and a dwelling time
of 15 s. The average value was determined from more than 20 measure-
ments. The tensile samples were extracted from the built block horizon-
tally. The dimensions of the reduced sections in the tensile coupon are
6 mm in width, 3 mm in thickness, and 26 mm in length. Tensile tests
were conducted on an INSTRON 5982 universal testing machine with a
1 mm min−1 loading speed. A noncontact advanced video extensome-
ter (AVE) was applied to measure the tensile strain, and a primary gauge
length of about 20 mm was used. A 2D digital image correlation (DIC)
system was used for in situ monitoring of the deformation and failure be-
havior of samples during tensile tests. High-resolution (2448 × 2048 pixel)
images were taken at 5 frames s−1 (aperture size f/2.8 and exposure time
1/20 s) using a FLIR Grasshopper3 CCD camera. A Zeiss GOM Corre-
late Pro software was used to analyze those images to obtain the strain
distribution maps.

Micropillar compression tests on the selected regions of the as-built
sample were carried out to understand the localized mechanical proper-
ties. Micropillars were milled from selected regions of the as-built sample
and the powder by the focused ion beam (FIB) system using a Ga ion
beam. The diameters of the micropillars for the powder and as-built are
about 5 and 9 μm, respectively, with a height-to-diameter ratio of about
3. The taper angles are all below 3°. The micropillar compressions were
conducted with a Micro-Materials NanoTest system using a ϕ20 μm flat
diamond indenter. The loading and unloading rates are 1 and 10 mN/s,
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respectively. The deformed pillars were observed by SEM at a tilted angle
of 40°.

Strengthening Mechanisms Analysis: To understand the strengthen-
ing behavior in LDED processed ILP deposited NMS, here analyze the
strengthening mechanism below. The fine lath martensites led to grain
boundary strengthening (𝜎g) following the Hall–Petch mechanism

𝜎g = kD−1∕2 (1)

The D is the mean thickness of the lath martensites, which is about
273±67 nm, as quantified from the TEM images. The k is the strength-
ening coefficient and is estimated as 149 MPa·μm1/2.[49]

The higher dislocation density (𝜌) in the NMS sample could also
contribute to a high YS via dislocation strengthening (𝜎d) following
equation[50]

𝜎d = M𝛽Gb
√
𝜌 (2)

where the Taylor factor M is about 2.9 for BCC Fe,[54] and 𝛽 is the constant
coefficient of 0.5.[50] The Burgers vector b and shear modulus G of the
matrix in martensitic steel are 0.249 nm[15] and 64 GPa,[55] respectively.
The dislocation densities were calculated as 𝜌 = 1.77 × 1014 m−2 by using
the line-intercept method as elaborated by Norfleet et al.[56]

Additionally, as revealed in Figure 4, the Ni3Ti precipitates are strong
enough to resist the dislocations’ movement, leading to the strengthening
of the matrix following the Orowan bowing mechanism[15]

⎧⎪⎪⎨⎪⎪⎩
𝜎o = Gb

2𝜋K (𝜆 − d)
) In

(
𝜆 − d

2b

)
1
K

= 1
2

( 1
1 − v

+ 1
) (3)

where d is the average diameter of the particles, v is Poisson’s ratio of the
matrix (i.e., v = 3 and K = 0.82), and G and b are the same as defined
above. The Ni3Ti nanoprecipitates are about 4±0.8 nm in diameter and
17±5 nm in length on average, and it can be simplified as a sphere of an
equivalent volume of diameter d = 7.5 nm. The 𝜆 is measured as about
15 nm on average.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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