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A B S T R A C T   

Grade 91 steel forms martensite during additive manufacturing and the extent of tempering of martensite 
significantly affects the mechanical properties of parts. Currently, there is a lack of quantitative understanding of 
the tempering kinetics for Grade 91 steel, and as a result, the effects of repeated thermal cycles on properties for 
different processing conditions cannot be determined. Here we evaluate the tempering kinetics by determining 
the constant terms in the Johnson Mehl Avrami kinetic equation from the tempering data available in the 
literature and the thermal cycles computed using a rigorously-tested heat and fluid flow model of multi-layer 
additive manufacturing. The raw tempering data are cleaned using a neural network to enhance accuracy. 
The lower layers experience repeating cycles of heating and cooling when the upper layers are added. As a result, 
the hardness is reduced owing to the tempering of martensite. In contrast, martensite formed in the upper layers 
is not tempered to the same extent and the hardness remains high. Therefore, the hardness of the part increases 
with the distance from the substrate. Variations in the heat input at different laser powers and scanning speeds 
significantly affect the extent of tempering. Since the method used here can provide a quantitative understanding 
of the tempering of martensite and the spatial variation of hardness, it can be used to tailor the microstructure 
and hardness of heat treatable printed metallic parts.   

1. Introduction 

Grade 91 steel, containing 9 % Cr, 1 % Mo, 0.1 % C is a good 
candidate for structural components in the nuclear energy industry 
owing to its strength, creep resistance, and high radiation tolerance at 
service temperature [1,2]. This steel is extensively used in wrought, 
welded, normalized, and tempered forms [2]. However, the maturity of 
the technology for the production of components of this steel by additive 
manufacturing (AM) is at a technological readiness level of 3 (TRL-3) 
[3]. This low TRL reflects the complexity of tailoring the microstructure 
and properties that result from the spatially non-uniform temperature 
fields, rapid cooling, and repeated thermal cycles during AM [4]. For 
example, rapid cooling during AM results in the formation of martensite 
that significantly affects the strength, hardness, and toughness of the 
components [4]. Repeated heating and cooling while depositing multi-
ple layers [5–7] temper the martensite [1] and locally reduce the 

hardness of the component. The extent of the tempering of martensite 
and the resulting reduction in hardness are affected by the thermal cy-
cles [8] and thus are influenced by the process parameters such as laser 
power, scanning speed, layer thickness, laser spot size, and preheat 
temperature [9]. Understanding the roles of the process parameters on 
the tempering of martensite and the spatial variation in hardness are 
important since they significantly influence the quality of the printed 
parts and their serviceability in industrial applications. 

Several kinetic models [10–12] were developed to explain the 
tempering kinetics by capturing the formation of martensite and 
tempered martensite. For example, Johnson Mehl Avrami (JMA) 
equation-based model was implemented to capture the mechanisms of 
tempering of martensite during welding of a martensitic steel [13]. 
Tempering kinetics were also modeled for multi-pass fusion welding of a 
commonly used ferritic-martensitic steel to show the variations in 
martensite fraction after each welding pass [14]. In AM, JMA equation- 
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based kinetic models were also used to explain the tempering kinetics 
[15]. However, the application of these kinetics models is often hindered 
due to the lack of a sufficient volume of high-quality, reliable tempering 
data from which the constants of the JMA equation are calculated [8]. 
This is because the tempering experiments are time-consuming and 
experiments at different temperatures and tempering times are needed 
to generate a sufficient volume of data. An alternate solution is to train a 
neural network [16–18] using the available tempering data and use it to 
generate a large volume of high-quality data that are subsequently used 
to calculate the JMA constants. Similar approaches have been used to 
generate high-quality data for a wide variety of engineering applica-
tions, including the boiling point and enthalpy of vaporization for 
several elements [19], atmospheric temperature [20], and highway 
asphalt pavement inspection [21]. 

The JMA equation-based kinetic models capture the tempering ki-
netics based on experimentally measured thermal cycles. However, 
measurement of thermal cycles is not possible at every location in a 
component [5]. Rapid movement of a very small molten pool during AM 
also makes the measurement of temperature challenging [5]. A recourse 
is to calculate the thermal cycles using well-tested mechanistic models 
[22] of the AM process and use the computed thermal cycles in a kinetic 
model to evaluate the tempering kinetics. These mechanistic models 
solve the equations of conservation of mass, energy, and momentum 
[23–25] by discretizing them in a computational domain. Depending on 
the size of the computational domain, often billions of equations are 
solved iteratively in a computationally efficient way. For example, to 
simulate a track of 10 mm length we need about 250,000 control vol-
umes and 1000 time steps. If we solve for 5 variables (temperature, 
pressure, and three components of velocity) with 100 iterations for each 
time step to achieve a good convergence we need to solve (250,000 ×
1000 × 5 × 100) 125 billion equations. 

Here we combined a rigorously-tested, transient, three-dimensional 
heat transfer and fluid flow model [23,24] and a JMA equation-based 
model [26] to evaluate the tempering kinetics of martensite during 
laser directed energy deposition (DED-L) of Grade 91 steel used in nu-
clear energy applications. Accurate thermal cycles were computed using 
the heat and fluid flow model at various places in the part for different 
process parameters. The thermophysical properties of the Grade 91 steel 
(Table 1) needed in the model were estimated by performing thermo-
dynamic calculations using a commercial package, JMatPro [27]. The 
alloy-specific constants in the JMA kinetic model were computed using 
high-quality tempering data obtained from a neural network [16–18]. 
The neural network was trained using available tempering data for 
Grade 91 steel from the literature [28] and was used to generate a large 
volume of high-quality tempering data for various combinations of 
temperature and tempering time. The JMA equation was then integrated 
by cumulatively adding small isothermal time steps over a computed 

thermal cycle to evaluate the extent of tempering. The analysis using the 
heat transfer and fluid flow model, JMA kinetic model, neural network- 
based machine learning, and tempering data provided a quantitative 
framework to evaluate the kinetics of tempering of martensite during 
multi-layer printing that was not possible to obtain in any other way. 
The methodology was also used to evaluate the influence of power and 
speed of the laser beam on the tempering kinetics. 

2. Methodology 

The methodology used here is schematically shown in Fig. 1. First, a 
neural network [16–18] was trained using tempering data on Grade 91 
steel collected from the literature [28]. Then the trained neural network 
was used to generate high-quality tempering data for various combi-
nations of temperature and tempering time. The constants in the JMA 
equation were calculated using the tempering data obtained from the 
neural network. A rigorously-validated, transient, three-dimensional 
heat and fluid flow model [23,24] of directed energy deposition - laser 
(DED-L) was utilized to compute thermal cycles at various places in the 
part. Then the JMA equation was integrated by cumulatively adding 
small isothermal time steps over a computed thermal cycle to estimate 
the hardness. Because the hardness variation in a component is directly 
related to the fraction of a phase changed to another phase [29–31], the 
extent of tempering was computed from the calculated values of the 
hardness. The assumptions made in the calculations are discussed 
below. 

2.1. Assumptions 

The following simplifying assumptions were made for the heat 
transfer and fluid flow model and the JMA equation-based calculations:  

(i) Fluid flow inside the molten pool is Newtonian and 
incompressible.  

(ii) The turbulence in the fluid flow was considered by using uniform 
enhancement of thermal conductivity and viscosity [23].  

(iii) Recoil pressure on the molten pool surface due to vaporization 
was ignored. This assumption was made because the molten pool 
surface temperature was significantly below the boiling point of 
the alloy.  

(iv) Liquid material properties were considered to be independent of 
temperature.  

(v) Fluid flow in the two-phase mushy zone was modeled following 
the Carmen-Kozeny equation for fluid flow through a porous 
medium [23].  

(vi) The JMA equation obtained from tempering data was used for the 
tempering kinetics in additive manufacturing. Since the kinetic 
data during AM are not available, this assumption provides a 
tractable framework for quantitative understanding of kinetics 
that cannot be obtained otherwise. This approach has proved to 
be of value in previous independent research. For example, JMA 
constants using conventional heat treatment data for H13 tool 
steel were successfully used [33] to model the kinetics during 
DED-L of H13 tool steel.  

(vii) The JMA relation was established using the aging data for Grade 
91 steel. The computed hardness was tested with the available 
data for Grade 92 steel since no data for Grade 91 were available. 
Since the chemical compositions of these two steels differ in Mo 
and W concentrations as shown in Table 2, the errors in the 
predictions of the hardness were evaluated and reported in Sec-
tion 3. 

2.2. Generation of high-quality tempering data using a neural network 

A neural network was used to generate high-quality tempering data 
for various combinations of tempering time and temperature. The 

Table 1 
Properties of Grade 91 steel used in the modeling. These properties represent the 
thermo-physical behavior of the alloy and affect the thermal cycles. Here, 
thermal conductivity and specific heat are taken as temperature dependent and 
the temperature in K is represented by ‘T’. The properties were calculated using 
the commercial software, JMatPro.  

Properties Values 

Liquidus temperature (K) 1775 
Solidus temperature (K) 1690 
Thermal conductivity (W/m K) 16.63 + 1.02 × 10− 2 T 
Specific heat (J/ kg K) 250.0 + 0.70 T − 2.0 × 10− 4 

T2 

Density (kg/m3) 7300 
Latent heat of fusion (J/kg) 260 × 103 

Viscosity (kg/m s) 7 × 10− 3 

Temperature coefficient of surface tension, dγ/dT 
(N/m K) 

− 0.40 × 10− 3 

Thermal conductivity of liquid (W/m K) 32.2 
Specific heat of liquid (J/kg K) 824.2  
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relation between the hardness and aging time and temperature is not 
known. Since the neural network does not require any explicit relation 
between the variables, it is the best choice in this case. The neural 
network was trained using tempering data of Grade 91 steel reported by 
Shrestha, et al. [28]. The data are tabulated in the Supplementary 
Document. The data contains measured hardness values of Grade 91 
steel for different initial hardness values, tempering temperatures, and 
tempering times. These three parameters serve as inputs to the neural 

network, with one output, hardness after tempering. In the neural 
network, a hyperbolic tangent function was fit using all training data by 
implementing an error back-propagation algorithm [16–18] that mini-
mizes the logarithmic error to update the weights linking different 
hidden layers. The number of hidden layer and hidden nodes were taken 
as one and six, respectively. The neural network calculations were done 
using a well-tested in-house code [17] compiled in the Intel Fortran 
Compiler. The details of the neural network are explained in Appendix 

Fig. 1. Schematic representation of the methodology used here. Here we used a heat transfer and fluid flow model, JMA kinetic model, neural network-based 
machine learning, and tempering data to provide a framework for evaluating the kinetics of tempering of martensite during multi-layer printing. 
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A. Fig. 2 shows a plot of hardness predicted by the trained neural 
network versus the experimentally measured hardness values that were 
used to train the neural network. The proximity of the data points to the 
diagonal line (mean absolute error = 6.8 VHN) indicates that the neural 
network is well-trained. 

The trained neural network was used to generate tempering data for 
different tempering times and temperatures. Fig. 3 provides the 
tempering data output by the neural network. The data shows the 
variation in the hardness values with the tempering time at various 
temperatures. During tempering, the hardness of Grade 91 steel parts 
decreases as the martensite changes to tempered martensite, forming 
chromium and vanadium carbides (Fig. 3). Because tempering is ther-
mally activated, an increase in tempering temperature leads to a greater 
reduction in hardness (Fig. 3). These tempering data were used to 
calculate JMA equation constants as described below. 

2.3. Calculations of constant terms in the Johnson Mehl Avrami (JMA) 
equation 

The constants in the JMA kinetic equation were computed using the 
tempering data of Grade 91 steel obtained from the neural network. The 
hardness variation in a component is directly related to the fraction of a 
phase changed to another phase [29–31]. Therefore, the extent of 
tempering (Y) can be expressed as a function of change in hardness (H) 
as, 

Y =
H0 − H

H0 − H∞
(1)  

where H0 is the initial hardness which was taken as 370 VHN which was 
the maximum hardness value (Fig. 3). H∞ indicates the hardness of a 
part after very long tempering and its value was taken as 184 VHN. H 
denotes the hardness of a part whose values at different times and 
temperatures were taken from the tempering diagram (Fig. 3). Varia-
tions in the extent of tempering with the tempering time for various 
temperatures are represented in Fig. 4 (a). 

From the JMA equation, the extent of tempering (Y) is expressed as 
[32], 

Y = 1 − exp[ − k(t)n ] (2)  

where t is time in seconds and n and k indicate the constant terms in the 
JMA equation. Therefore, the magnitudes of ln(k) and n (Table 3) can be 
found at different temperatures from the Y-intercepts and slopes of Fig. 4 
(b), respectively. In addition, k is expressed as [32], 

k = k0exp( − Q/RT) (3)  

where k0 is a constant that depends on the material used, Q denotes the 
activation energy needed for the transformation in J/mol K, T indicates 
the temperature in K, and R represents the universal gas constant whose 
value is 8.314 J/mol K. The value of Q/R was estimated from the slope of 
the ln(k) versus 1/T plot (Fig. 5), where Q = 3.01 × 104 J/mol. In 
addition, the Y-intercept of the same plot indicated the value of ln(k0) =
2.0 which gave k0= 7.31 (seconds)-0.19. A mean value of n for different 
temperatures (Table 3) was calculated as n = 0.19 and was used in the 
calculation. 

Table 2 
Chemical compositions (in wt%) of ASTM A387 Grade 91 steel and ASTM A335 
Grade 92 steel.  

Elements Grade 91 Grade 92 

Cr 7.90–9.60 8.50–9.50 
Mo 0.80–1.10 0.30–0.60 
V 0.16–0.27 0.15–0.25 
Nb ≤ 0.08 0.04–0.09 
Mn 0.25–0.66 0.30–0.60 
Cu ≤ 0.18 – 
Ni ≤ 0.43 ≤ 0.40 
Ti ≤ 0.01 – 
Al ≤ 0.02 ≤ 0.40 
Zr ≤ 0.01 – 
C 0.06–0.15 0.07–0.13 
Si 0.18–0.56 ≤ 0.50 
P ≤ 0.025 ≤ 0.020 
S ≤ 0.012 ≤ 0.010 
N 0.025–0.080 0.030–0.070 
W – 1.50–2.00 
B – 0.001–0.006 
Fe Balance Balance 

[Note: Grade 91 composition is available at: www.alloysteelplates.com/astm-a 
387-grade-91-class-1.html. 
Grade 92 composition is available at: www.metalspiping.com/astm-a335-p92. 
html]. 

Fig. 2. A plot showing the hardness predicted by a neural network (NN) versus 
the experimentally measured hardness [28] values that were used to train the 
neural network. There are 36 data points taken from the literature for Grade 91 
steel. The data are tabulated in the Supplementary Document. The mean ab-
solute error in training the neural network is 6.8 VHN. 

Fig. 3. Tempering data for Grade 91 steel showing the hardness at different 
temperatures and tempering times. These data are obtained from a neural 
network. The initial hardness is 370 VHN. The data are tabulated in the Sup-
plementary Document. 
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2.4. Calculation of thermal cycles using the heat and fluid flow model 

A well-tested, 3D, transient heat transfer and fluid flow model 
[23,24] was used to calculate the thermal cycles during DED-L. The 
model solved the equations of conservation of energy, mass, and 

momentum to compute the 3D temperature and velocity distributions. 
Multiple thermal cycles at various places in the part were extracted from 
the computed temperature field. The model was discussed in detail and 
rigorously tested in our previous publications [23,24] and is not dis-
cussed here again. The important features in applying the well-tested 
model are described below. 

Calculations were performed using the cartesian coordinate for 
multi-layer thin walls. For all layers, a unidirectional scanning of the 
laser beam was used along the positive X-axis. The direction of building 
multiple layers was taken along the positive Z-axis. The positive Y-axis 
was perpendicular to the direction of the laser scanning and represented 
the direction along the width of the deposit. Half of the computational 
domain was used in the calculations by assuming symmetry on both 
sides of the vertical XZ plane. This assumption was made to make the 
model computationally efficient. The model was developed using an in- 
house Fortran code compiled in an Intel Compiler. The thermophysical 
properties of the Grade 91steel needed in the model were estimated 
using a commercial package JMatPro [27] and are presented in Table 1. 

2.5. Prediction of the extent of tempering and hardness 

The extent of tempering of martensite and the resulting change in 
hardness are affected by the thermal cycle. It was assumed that a ther-
mal cycle is a cumulative addition of many very small time steps (Δt) at 
constant temperatures (T). The addition of these small isothermal time 
steps (Δt) over the complete thermal cycle included the entire tempering 
process [33], 
∑Δt

t
= 1 (4)  

where t represents time in seconds and Δt is in seconds. The time (t) 
indicated the time needed to reach a given value of hardness (H) at a 
particular temperature (T) according to the isothermal JMA equation. 
Therefore, the value t can be estimated by combining Eqs. (1)–(3) as, 

t =

⎡

⎢
⎢
⎣

ln
(

1 − H0 − H
H0 − H∞

)

− k0exp
(
− Q
RT

)

⎤

⎥
⎥
⎦

1/n

(5)  

where T indicates the temperature in K. Other parameters are explained 

Fig. 4. Plots needed to predict the JMA constants for Grade 91 steel. (a) Var-
iations in the quantity Y (extent of tempering) with respect to tempering time 
for various tempering temperatures. Here, ‘H’ represents the Vicker's hardness 
in Fig. 3. H0 and H∞ have their values as 370 and 184 VHN, respectively. (b) 
Plot for extracting the magnitudes of the variable, ln(k) and n. ‘Y’ values are 
taken from figure (a). The magnitudes of the variables, ln(k) and n can be 
extracted from the y-intercepts and slopes of different lines and are supplied in 
Table 3. ‘k’ has a unit of (seconds)-0.19. Since the JMA equation is plotted in 
logarithmic scale in figure (b), the initial phase of the plot appears to be nearly 
linear with a relatively larger separation among two consecutive data points. 

Table 3 
The values of ln(k) and n at different temperatures needed to calculate the 
constants used in the JMA equation. These two variables are calculated using 
isothermal tempering data of Grade 91 steel. The slopes and y-intercepts of the 
lines in Fig. 4 (b) provide n and ln(k), respectively.  

Temperature, K ln (k) n 

963 − 1.72  0.16 
983 − 1.70  0.18 
1003 − 1.64  0.19 
1023 − 1.54  0.20 
1043 − 1.44  0.21 
1063 − 1.40  0.22 
Average n  0.19  

Fig. 5. A linear plot between ln(k) given in Table 3 and 1/temperature. The 
value of Q/R was estimated from the slope of the plot, where Q = 3.01 × 104 J/ 
mol. In addition, the value of y-intercept of the plot indicated the magnitude of 
ln(k0) = 2.0 which gave k0= 7.31 (seconds)-0.19. The R2 value of 0.96 indicates 
a good linear fitting of the data. 
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in Section 2.2. 
The hardness attained after the part experiences an entire thermal 

cycle was estimated by using Eq. (4) over a thermal cycle. To do so, the 
time (t) in Eq. (5) was substituted in Eq. (4) and the time step (Δt) and 
the temperature (T) were taken from the thermal cycle. Therefore, the 
only unknown variable is the hardness (H). Then Eq. (4) was solved 
using many iterations over a computed thermal cycle to calculate the 
hardness (H) until the condition in that equation is satisfied. Smaller 
time steps (Δt) provided more accurate results. The extent of tempering 
(Y) was estimated from the computed hardness by using Eq. (1). 

3. Results and discussion 

The tempering kinetics of martensite during multi-layer printing of 
Grade 91 steel is affected by the thermal cycles that are controlled by the 
3D, transient temperature field. Fig. 6 shows the 3D temperature and 
velocity distributions during the deposition of a single-layer Grade 91 
steel deposit using DED-L for the processing conditions in Table 4 when 
the position of the beam was at the half-length of the deposited track. In 
the figure, the fusion zone is represented by the red area surrounded by 
the liquidus isotherm (1775 K) of Grade 91 steel. The area between the 
solidus (1690 K) and liquidus (1775 K) isotherms indicate the two-phase 
mushy region. Near the front of the molten pool, isotherms are com-
pressed. However, due to the high scanning speed along the positive x- 
direction, isotherms are elongated near the trailing edge. The deposit 
exhibits a curved top surface formed due to the accumulation of pow-
ders. The deposit height is the maximum at the center of the fusion zone 
and it decreases with the distance from the center. Black vectors 
represent the velocity of the flow of the molten material. This convective 
flow is primarily driven by the spatial gradient of surface tension on the 
molten pool top surface. In addition, the absolute magnitude of the 
velocity vectors can be predicted by comparing the length of these 
vectors with the length of the reference vector given in the figure. The 
flow of the liquid metal occurs along the curved top surface of the 
molten pool from the mid-location where surface tension is low to the 
boundary where the surface tension is high. 

Thermal cycles at different places in the part can be estimated from 
transient, three-dimensional temperature fields (Fig. 6), and hardness 
can be computed at that location based on the thermal cycle using Eq. 
(4). Fig. 7 (a) shows that the computed hardness variation along the 
deposit height for a 10 layers high thin wall agrees well with the cor-
responding experimental results [34]. These results are for DED-L of 
Grade 92 steel which has a similar chemical composition and precipi-
tation kinetics as Grade 91 steel. The hardness was measured using a 
Vickers diamond indenter at multiple heights of the wall [34]. Hardness 
was calculated using Eq. (4) at the same places where experimental 
measurements were performed by extracting the thermal cycles at the 
corresponding locations. It should be noted that the hardness increases 
with layers until it reaches a critical layer, layer 5, beyond which it re-
mains almost constant. These variations in hardness are explained using 
the numerically calculated thermal cycles at different layers (Fig. 7 
(b–d)), as discussed below. 

While depositing a layer, rapid cooling results in the formation of 
martensite. While depositing the subsequent layers, the martensite suf-
fers from repeated heating and cooling resulting in its phase trans-
formation. If the peak temperature of a deposited layer while depositing 
subsequent layers exceeds the Ac1 temperature (1123K) [34], the 
martensite transforms back to the austenite. The austenite upon cooling 
forms martensite again which affects the local hardness. In contrast, 
when the peak temperature of a deposited layer while depositing the 
subsequent layers does not exceed the Ac1 temperature, subsequent 
heating and cooling transform the martensite into tempered martensite. 
For the upper layers, for example, the 8th layer (Fig. 7 (d)), the peak 
temperature always exceeded the Ac1 temperature (1123 K). Therefore, 
the hardness of those later layers was almost unchanged because the 
martensite was untempered after re-austenization. However, for the 

Fig. 6. Temperature and convective velocity distributions in three different 3D 
isometric orientations (a) and (b). These computed results are for Grade 91 steel 
processed using DED-L at 800 W power and 6.0 mm/s speed. In addition, other 
DED-L process variables are supplied in Table 4. Here, half of the computational 
domain is represented in this figure by taking the advantage of the symmetry 
with XZ plane. Figure (c) shows a closer view of figure (b) to show the velocity 
vectors inside the molten pool. 

Table 4 
Additive manufacturing process variables used in this research.  

Process parameters Values 

Laser power (W) 650, 800, 950 
Laser scanning speed (mm/s) 4, 6, 8 
Laser beam radius (mm) 1.5 
Layer thickness (mm) 0.50 
Mass feed rate of powders (g/s) 0.133 
Substrate thickness (mm) 20  
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lower layers, for example, the 1st and 4th layers (Fig. 7 (b, c)), the peak 
temperature did not exceed the Ac1 temperature after the deposition of a 
few subsequent layers. The repeating cycles of heating and cooling 

below the Ac1 temperature gradually transformed the martensite to the 
tempered martensite and reduced the hardness proportionally. For 
example, the 1st layer (Fig. 7 (b)) experienced more thermal cycles than 
the 4th layer (Fig. 7 (c)) and exhibited lower hardness. In short, with the 
deposition of layers, the extent of tempering decreased (Fig. 8) and the 
hardness increased (Fig. 7 (a)) until a critical layer was reached beyond 
which the hardness remained unchanged. 

Figs. 7 and 8 show that variations in the extent of tempering and the 
resulting hardness are strongly influenced by the local thermal cycles 
and thus by process parameters such as the power and speed of the laser 
beam. Two opposing factors contribute to these variations, (i) the 
number of thermal cycles below Ac1 temperature and (ii) the temper-
atures sustained during these cycles. High power or slow scanning speed 
indicates a high heat input that results in a high temperature. Under 
such conditions, a layer experiences fewer thermal cycles below Ac1 
temperature (1123 K) resulting in a less amount of martensite trans-
formed into tempered martensite. In contrast, more tempering can take 
place due to a high temperature at high power and slow scanning speed. 
Figs. 9 and 10 provide examples to explain the effects of power and 
speed of the laser beam, respectively, on the layer-wise variations in the 
extent of tempering, as discussed below. 

We consider the 1st and 3rd layers as examples. The 3rd layer 
experienced three, two, and one thermal cycles below Ac1 temperature 
(1123 K) at 650 W, 800 W, and 950 W laser powers, respectively (Fig. 9 
(a)). Therefore, the 3rd layer exhibited the maximum percentage of 
tempering at 650 W (Fig. 9 (b)) because it experienced the highest 
numbers of thermal cycles below Ac1 temperature. Similarly, the 1st 
layer experienced five, four, and three thermal cycles below Ac1 tem-
perature at 650 W, 800 W, and 950 W laser powers, respectively (Fig. 9 
(a)). Therefore, the 1st layer experienced the minimum percentage of 
tempering at 950 W because it experienced the least number of thermal 

Fig. 7. (a) A plot comparing the computed 
hardness (in VHN) with the experimentally 
measured [34] values for Grade 92 steel. The 
variations in hardness are taken with the 
distance vertically away from the substrate. 
These results are simulated along a 10 layers 
thin wall processed using DED-L at 800 W 
power and 6.0 mm/s speed. In addition, 
other DED-L process variables are supplied in 
Table 4. The root mean square error in 
hardness prediction in figure (a) is 6.8 VHN. 
Thermal cycles monitored at the half-length, 
mid-width of the track on the top surface of 
the (b) 1st, (c) 4th, and (d) 8th layer while 
depositing the 10 layers. The temperature 
corresponding to the horizontal red dashed 
line indicates the Ac1 temperature (1123 K). 
(For interpretation of the references to colour 
in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 8. Variations in the extent of tempering (computed using eq. (1)) of 
martensite with the distance from the substrate during DED-L of a Grade 91 
thin-wall (10 layers tall) using 800 W power and 6.0 mm/s speed. In addition, 
other DED-L process variables are listed in Table 4. 
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cycles below Ac1 temperature. However, the 1st layer also experienced 
the highest temperature at 950 W which transformed more martensite 
into tempered martensite. The percentage of tempering at the 1st layer 
was decided by these two opposing factors. Consequently, the extent of 
tempering at the first layer was the highest at 950 W (Fig. 9 (b)) where 
the second factor was more influential than the first one. Therefore, for 
different layers, the effect of laser power on the extent of tempering 
varied significantly depending on the number of thermal cycles below 
Ac1 temperature and the peak temperature. Similar observations were 
made in Fig. 10 where significant variations in the extent of tempering 
were observed at various layers at three different scanning speeds. 
Therefore, the extent of tempering of martensite and the resulting 
hardness of the part can be controlled by adjusting the heat input by 
altering the laser power and scanning speed. However, care should be 
taken while adjusting the heat input so that it does not form defects such 
as cracking, lack of fusion voids, distortion [35,36]. 

Since the method used here can provide a quantitative understand-
ing of the tempering of martensite and the variation in hardness, it can 
be used to tailor the microstructure and hardness of some printed 
metallic parts of heat-treatable alloys. The methodology of combining 

mechanistic model, machine learning, JMA kinetic model, and experi-
mental data can also be used to evaluate the phase transformation ki-
netics in other engineering alloys. Examples may include the kinetics of 
the formation of precipitates in the precipitation-hardened nickel and 
aluminum alloys. However, it needs high-quality and reliable tempering 
data for those alloys and well-tested thermophysical properties of alloys 
to compute the thermal cycles, and thus requires significant research 
efforts in this area. 

4. Summary and conclusions 

In summary, we evaluated the tempering kinetics of Grade 91 steel 
during multi-layer additive manufacturing using the Johnson Mehl 
Avrami kinetic relation and thermal cycles computed by a heat transfer 
and fluid flow model. The parameters of the JMA kinetic relation were 
derived based on tempering data obtained from the literature and 
cleaned using a neural network. The computed results show fair agree-
ment with the experiments. Below are the important findings: 

Fig. 9. (a) Number of thermal cycles below Ac1 and (b) computed variations in 
the percentage of tempering of martensite with layer number during DED-L of a 
Grade 91 thin wall (10 layers tall) at different laser powers and at a constant 
scanning speed of 6 mm/s. In addition, other DED-L process variables are listed 
in Table 4. 

Fig. 10. (a) Number of thermal cycles below Ac1 and (b) computed variations 
in the percentage of tempering of martensite with layer number during DED-L 
of a Grade 91 thin wall (10 layers tall) at different scanning speeds and at a 
constant power of 800 W. In addition, other DED-L process variables are listed 
in Table 4. 
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1) The initially deposited layers of a multi-layer deposit experienced 
repeated thermal cycles that tempered the martensite and thus 
reduced hardness. In contrast, the martensite in the upper layers was 
not tempered and retained its high hardness. Therefore, the hardness 
of the part increases with the distance from the substrate and the 
extent of tempering of the martensite follows the opposite trend. 
However, the hardness variation depends on the specimen size and 
the nature of variation may be different for taller specimens.  

2) The extent of tempering at different heat inputs resulted from two 
opposing factors: (i) the number of thermal cycles below Ac1 tem-
perature and (ii) the peak temperatures attained during these cycles. 
High heat input at high power or slow speed of the laser beam 
resulted in a high temperature. Under such conditions, a layer 
experienced fewer thermal cycles below Ac1 temperature (1123 K) 
resulting in a less extensive tempering of martensite and relatively 
higher hardness. In contrast, more martensite was transformed to 
tempered martensite at a high temperature caused by high heat 
input.  

3) During multilayer additive manufacturing, there is a critical height 
of the deposit above which the hardness and extent of tempering 
remained almost unchanged. For the layers above the critical height, 
the peak temperature exceeded the Ac1 temperature (1123 K) and 
the martensite was transformed to austenite. The austenite upon 
cooling formed martensite again. Therefore, the hardness for those 
layers was affected by the amount of martensite and remained almost 
unchanged. High heat input owing to the slow speed or high power of 
the laser beam moved the critical deposit height close to the 
substrate. 
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Appendix A. Working principle of the neural network 

First, a neural network was trained using the aging data from the literature that had a lot of fluctuations and the volume of available data was not 
sufficient to reliably estimate the JMA parameters. The trained network was used to generate a sufficient volume of high-quality data that was used to 
estimate the JMA parameters. In the neural network, all training data were used to fit a hyperbolic tangent function by using an error back- 
propagation algorithm [16–18] that minimizes the logarithmic error to update the weights linking different hidden layers. The number of hidden 
layers and hidden nodes were taken as one and six, respectively. There are three inputs and one output. The output was computed with the following 
hyperbolic tangent function: 

y = tanh

(
∑n

i=1
wixi + θi

)

(6)  

where xi and y are the input and the output of a hidden node, wi is the weight, n is the total number of inputs (n = 3) and θi is the bias dependent on the 
ith input. The neural network model with the least log predictive error was selected as the best model and used for the validation and testing data sets. 
For a better understanding of the neural network, the basic structure of the NN is shown in Fig. 11. The number of input nodes is i = 1, n, and the 
number of hidden nodes is j = 1, m. Here, the values of n and m are 3 and 6, respectively. The weight matrix from input nodes to hidden nodes is wtih(j, 
i), and the bias coefficient for each hidden node is wtbh(j,1), and the weight matrix from hidden nodes to output nodes is wtho(1, j). 

For our case, feeding the neural network with three input variables, the best number of hidden nodes is 6 and the corresponding weight matrix for 
wtih(j, i), wtbh(j,1) and wtho(1, j) are provided below. 

wtih(i, j) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 0.25 − 0.13 0.027
− 0.266 − 0.139 0.028
− 0.266 − 0.139 0.028
− 0.266 − 0.139 0.028
0.265 0.138 − 0.028
− 0.266 − 0.139 0.028

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 11. The basic structure of a neural network [17].  
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wtbh(j, 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.297
0.317
0.317
0.317
− 0.316
0.317

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

wtho(1j)T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 0.075
− 0.081
− 0.081
− 0.081
0.080
− 0.081

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmapro.2022.08.061. 
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