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A B S T R A C T   

Smooth surfaces in the printed parts are essential for long fatigue life and high dimensional accuracy. They are 
currently achieved by post-process machining and grinding of external surfaces that add extra costs. Mitigating 
the surface roughness of internal channels remains a challenge. Here we use a high-throughput screening 
approach that analyzes the value of a dimensionless index for many experiments and provides a pathway for 
reducing the surface roughness without the need for post-processing. The index is derived by dimensional 
analysis of causative variables that affect the roughness of the surface such as heat input, powder diameter, layer 
thickness, pool aspect ratio, Marangoni force, contact angle, and enthalpy of melting of alloys. Using the results 
of high-throughput screening, we develop easy-to-use process maps that are consistent with the experimental 
observations. Among the causative variables, heat input and the contact angle of the molten material with the 
substrate have the highest and lowest influence on the smoothness of printed surfaces. An aluminum alloy, 
AlSi10Mg is found to be the best choice for printing smooth surfaces among the four alloys considered here. 
These findings can improve the surface quality of additively manufactured parts that now significantly hinder 
their wider industrial adaptation.   

1. Introduction 

3D printing or additive manufacturing (AM) of metals and alloys is 
widely used to fabricate complex and intricate parts for aerospace, en-
ergy, healthcare, transportation, and consumer product industries 
[1–6]. Thin layers of alloy powders are selectively melted by a high- 
intensity heat source such as a laser or electron beam and are solidi-
fied layer by layer to make intricate parts. These intricate parts mandate 
the printing of smooth surfaces to achieve fine geometry and high 
dimensional tolerance. However, the printed parts often suffer from 
rough surfaces [3,7,8] that affect the quality and dimensional accuracy 
of parts. In addition, rough surfaces may act as stress concentrating sites 
and initiate fatigue cracks and significantly degrade the mechanical 
performance and fatigue life of the parts [9,10]. Therefore, the printing 
of smooth surfaces is very important for fabricating dimensionally ac-
curate, high-quality parts. 

Several approaches have been undertaken to print smooth surfaces. 
Post-processing operations such as machining, grinding, and polishing 
produce smooth surfaces but add extra costs and are not applicable for 
finishing internal surfaces [11–13]. Hybrid manufacturing combines 

deposition and machining to make smooth surfaces without the need for 
post-processing [14,15]. However, it is a slow and difficult process to 
control. Surface roughness can also be minimized by adjusting the 
process variables such as power and scanning speed of the laser beam, 
layer thickness, hatch spacing, and preheating temperature by experi-
mental trial and error [16–18]. However, this process is time-consuming 
and expensive because it needs thousands of trial tests to explore a large 
window of process parameters. In addition, these experimental trials 
often do not guarantee smooth surfaces because surface roughness often 
does not follow a particular trend with the process variables. For 
example, low laser power may cause improper melting and rough sur-
faces; while a very high power may result in a high temperature which 
can cause spatter generation and poor surface finish [19–22]. Re-
searchers have developed powder scale models that can simulate the 
formation of rough surfaces during AM [23]. However, these calcula-
tions are computationally intensive, require supercomputers available 
only in big companies and national labs, and are restricted to very small 
length and time scales. 

Smooth surfaces can be printed using appropriate conditions to avoid 
surface roughness obtained by synthesizing a wide variety of available 
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experimental data in a rapid and computationally efficient way. The 
high-throughput screening [24–28] approach can analyze a large vol-
ume of diverse data rapidly to provide important insights that cannot be 
obtained by any other means. It screens the available data based on the 
value of an index and makes useful predictions. An index is generally a 
dimensionless form of the combination of variables responsible for a 
particular problem. For example, a dimensionless quantity was used by 
correlating the variables representing the folding behavior of proteins 
such as molecular weight and the radius of gyration [29]. The high- 
throughput screening was used to analyze the values of the dimen-
sionless quantity to assess the stability of proteins [29]. For the printing 
of smooth metallic surfaces, the dimensionless index can be derived by 
unifying the variables causing surface roughness. These causative vari-
ables include heat input [21,22], powder diameter [30], layer thickness 
[31], pool aspect ratio (pool length/depth) [32,33], Marangoni force 
[34], contact angle [35], and enthalpy of melting [3,4] of alloys and 
they depend on the AM process parameters and alloy properties. 

Here we derive and propose a simple and verifiable dimensionless 
‘surface roughness index’ by combining the causative variables for laser 
powder bed fusion (PBF-L) using the Buckingham π-theorem [36]. The 
values of the dimensionless index for one hundred and twenty inde-
pendent experiments [31,37–49] for four alloys are computed and 
analyzed using a high-throughput screening method. The causative 
variables are calculated using a rigorously-tested heat transfer and fluid 
flow model of AM process [34,50]. The hierarchical influence of the 
causative variables on surface roughness is provided. In addition, 
different alloys are compared based on their relative susceptibility to 
surface roughness. Furthermore, we provide the surface roughness maps 
for four commonly used alloys under various conditions to guide the 
printing of smooth surfaces. 

2. Methods 

Fig. 1 explains the methodology used here. We identify several 

Fig. 1. Schematic representation of the method used. The high-throughput screening analyzes the values of a dimensionless index to provide important insights for 
printing smooth surfaces. The microstructural image showing the rough surfaces is taken from [31]. 
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Table 1 
Variable, symbol, S.I. unit, dimension, range, and explanation of the variables used in SRI [3,21,22,30–35].  

Variable Symbol S.I. 
unit 

Dimension Range Explanation 

Heat input H J/m MLT− 2 6.67E+1–2.00E+3 Improper heat input may cause a discontinuous pool, form small metallic balls on the part surface, 
and result in rough surfaces. [21,22]. 

Powder diameter D m L 9.00E-6–6.60E-5 Large powders can attach to the edge of the deposit and cause rough surfaces [30]. 
Layer thickness t m L 2.00E-5–9.20E-5 Thick layers can increase the staircase effect and result in rough surfaces [31]. 
Pool aspect ratio ε − − 1.40–14.50 Pools with a high aspect ratio are easy to break into discontinuous pools and can cause rough 

surfaces [32,33]. 
Marangoni force F N MLT− 2 1.45E-6–3.17E-4 Large Marangoni force helps the spreading of liquid metal and is good for smooth surfaces [34]. 
Contact angle θ Radian M0L0T0 1.03–1.36 A large contact angle indicates difficulty in wetting and spreading that increases the surface 

roughness [35]. 
Enthalpy of 

melting 
E J/m3 ML− 1 T− 2 1.90E+9–7.10E+9 High enthalpy of melting may increase the amount of partially melted powders and result in rough 

surfaces [3]. 
Surface 

roughness 
Ra m L 3.75E-6 – 

3.58E-5 
−

Fig. 2. Effect of the (a) heat input, (b) powder diameter and layer thickness, (c) pool aspect ratio, (d) Marangoni force, (e) contact angle, and (f) enthalpy of melting 
on surface roughness in PBF-L parts. The experimental results in (a) are taken from [21]. The values of enthalpy of melting for four alloys are taken from [3,4]. 
Explanations of the effects of these variables on the surface roughness are provided in Table 1. 
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causative variables for surface roughness including heat input per unit 
length of deposit (laser power/scanning speed) [21,22], powder diam-
eter [30], and layer thickness [31] that are process variables, alloy 
properties such as enthalpy of melting [3] and contact angle [35], and 
mechanistic variables such as the aspect ratio of the pool (pool length/ 
pool depth) [32,33] and Marangoni force [34]. Pool aspect ratio and 
Marangoni force are calculated using a heat transfer and fluid flow 
model of powder bed fusion [34,50]. The causative variables are com-
bined in a dimensionless form using the Buckingham π theorem [36] to 
derive a surface roughness index (SRI). This index helps in high- 
throughput screening [24,25] of a large volume of experimental data 
to provide pathways to print parts with smooth surfaces. 

2.1. Heat transfer and fluid flow model of powder bed fusion 

A heat transfer and fluid flow model [34,50] is developed and used to 
calculate the pool size, temperature, and velocity fields during the PBF-L 
process taking the process parameters, material, and gas properties as 
inputs. The model iteratively solves the conservation equations of en-
ergy, mass, and momentum in a three-dimensional computational 
domain. An in-house Fortran code compiled using an Intel Fortran 
Compiler is used to perform the calculations in a 3D computational 
domain consisting of the substrate, power bed, deposited layers and 
hatches, and the shielding gas. The model provides accurate results on 
pool geometry and temperature fields by considering the effects of the 
convective flow of molten materials. A traveling grid approach [34] is 
used to enhance computational efficiency. More information about this 
model is available in previous publications [34,50]. The causative var-
iables, the aspect ratio of the pool, and Marangoni force are calculated 
using this model. 

2.2. Causative variables and their calculations 

The causative variables (Table 1), their effects on the surface 
roughness (Fig. 2), and their calculation methods are explained in this 
sub-section. The values of the causative variables, material properties, 
and process parameters for one hundred and twenty independent ex-
periments for four alloys are provided in Tables S1 and S2 in the Sup-
plementary document. 

2.2.1. Heat input (H) 
In the PBF-L process, the laser is used as the heat source. The heat 

input is calculated as the ratio of laser power to scanning speed. High 
laser power and a low scanning speed provide high heat input. The heat 
input can affect the surface roughness (Fig. 2 (a)) by influencing the 
amount of molten liquid and the stability of the molten pool. Improper 
heat input, such as low laser power and a high scanning speed, results in 
an insufficient amount of molten liquid, improper pool size, a discon-
tinuous deposit of liquid metal, and the formation of a rough surface 
[21]. However, too high heat input is also unfavorable for molten pool 
stability [22]. 

2.2.2. Powder diameter (D) 
During PBF-L, partially-melted powders attached to the molten pool 

edge can cause a rough surface (Fig. 2 (b)). To reduce the influence of 
partially-melted powder attachment, the use of fine powders is often 
recommended [30]. However, small, uniform, and high-quality powders 
increase the cost. Some research suggests that the influence of the 
partially-melted powder attachment cannot be completely avoided [3]. 
A proper powder size should be selected to balance the surface quality 
and the feedstock cost. 

2.2.3. Layer thickness (t) 
The layer thickness plays an important role in the formation of rough 

surfaces. A high layer thickness increases the ‘staircase effect’ and in-
creases the difficulty to build a smooth surface (Fig. 2 (b)) [31]. 

Therefore, the deposition of thin layers is recommended to reduce the 
surface roughness. However, a very small layer thickness indicates low 
productivity, requires more time to build a part and increases the cost. 
Therefore, a proper layer thickness should be selected to maintain a 
smooth surface without affecting productivity. 

2.2.4. Pool aspect ratio (ε) 
Rough surfaces may be originated because of the formation of balls 

due to the instability of the molten pool [32,33]. The capillary instability 
is related [33] to the pool aspect ratio which is represented as the ratio 
between the length and depth of the molten pool (Fig. 2 (c)). A molten 
pool with a long length and a small depth (high pool aspect ratio) is easy 
to separate into discontinuous parts, form balls around the deposit, and 
cause a rough surface [33]. Therefore, a small pool aspect ratio is helpful 
to reduce surface roughness. Both the length and depth of the pool are 
estimated using the heat transfer and fluid flow model to compute the 
values of the pool aspect ratio. 

2.2.5. Marangoni force (F) 
The surface roughness also depends on the molten liquid flow and 

pool geometry [4,34]. The spatial gradient of surface tension (in N/m), 
also called Marangoni stress (N/m2) primarily drives the convective flow 
of molten liquid. The liquid metal flows from the places with low values 
of surface tension to the places with high values. For a certain pool 
surface area, the integral of surface tension gradient or Marangoni stress 
over the pool top surface area is called Marangoni force (in N, Fig. 2 (d)). 
A high Marangoni force indicates a vigorous convective flow and uni-
form spreading of liquid, which is good for maintaining the continuity of 
the molten pool and forming a smooth surface. The Marangoni force (F) 
is determined as the product of the spatial gradient of surface tension 
(N/m2) and pool top surface area (m2) in Eq. (1). Surface tension 
gradient (τ) and pool top surface area (St) can be computed by the heat 
transfer and material flow model, shown in Eqs. (2) and (3), 
respectively. 

F = τ× St (1)  

τ = −
dγ
dx

= −
dγ
dT

×
dT
dx

= −
dγ
dT

×
ΔT
Δx

(2)  

St = π ×
L
2
×

W
2

(3)  

where τ is the surface tension gradient (in N/m2), γ is the surface tension 
of the molten pool (in N/m), Δx is the distance along the pool surface, T 
is the temperature, ΔT is the difference of the peak temperature and the 
solidus temperature of alloys. St is the top surface area of the molten 
pool, which is assumed as a flat ellipse whose major and minor axes are 
equal to the pool length and width, respectively. Pool length and pool 
width are represented by L and W, respectively. 

2.2.6. Contact angle (θ) 
During the deposition of a layer, a molten liquid droplet spreads on 

the previously deposited tracks and the substrate, cools down and so-
lidifies to form the deposit. The contact angle between the molten liquid 
droplet and the previously deposited tracks or the substrate affects the 
surface roughness [35]. The contact angle (Fig. 2 (e)) is measured as the 
angle of a liquid interacting with a solid surface. It affects the wetting 
and spreading ability of the molten liquid [35]. A low contact angle 
indicates that the liquid is easy to spread on the solid surface. Therefore, 
the alloy with a small contact angle is suitable for fabricating parts with 
smooth surfaces. 

2.2.7. Enthalpy of melting (E) 
Alloys with a low enthalpy of melting are easier to melt and form 

smooth surfaces [3,4]. Enthalpy of melting (Fig. 2 (f)) represents the 
heat required to melt per unit volume of material and is expressed as: 
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E = ρ×
(
cp ×ΔT + L

)
(4)  

where ρ and cp are the density and the specific heat of alloys, respec-
tively, ΔT is the temperature difference between the liquid and solidus 
temperatures, and L is the latent heat. The material properties of four 
alloys are available in Table S1 in the Supplementary document. 

2.3. Buckingham π theorem for dimensional analysis 

The aforementioned causative variables are combined using the 
Buckingham π theorem [36] in a dimensionless form. The theorem in-
dicates that a physical equation with n number of physical variables can 
be rewritten in terms of p number of dimensionless parameters, π1, π2, 
π3,.., πp, constructed from the original equation, where k is the number 
of physical dimensions and p = n − k. The physical dimensions are mass 
(M), length (L), and time (T). For our case, we consider six variables (n =
6), E, θ, F, t, ε, and H, and three dimensions, M, L, and T (k =3). 
Therefore, there are three (6-3) dimensionless π terms. The variable, 
powder diameter (D) is used to non-dimensionalize the surface rough-
ness where the roughness values are divided by the corresponding 
powder diameter. The Buckingham π theorem is used in this work for 
deriving a dimensionless surface roughness index. 

2.4. Pearson’s correlation matrix 

For better understanding and analyzing data, the correlation be-
tween any two variables can be represented by Pearson’s correlation 
coefficient [51] with the Eq. (5). The value of Pearson’s correlation 
coefficient is in the range of [− 1,1]. The value closer to ‘1’ indicates a 
stronger positive linear correlation between two variables (such as X and 
Y), while ‘-1’ shows a perfect negative linear correlation. Values close to 
‘0’ suggest that two variables are independent of each other. 

ρ =
cov(X, Y)

σXσY
(5)  

where ρ is the Pearson’s correlation coefficient, X and Y are two vari-
ables, cov(X,Y) is the covariance of X and Y, σX and σY are the standard 
deviations of X and Y, respectively. The calculations of covariance and 
standard deviation are explained in the Supplementary document. A 
Pearson’s correlation matrix contains the correlation coefficients of all 
combinations of variables. 

2.5. High-throughput screening 

The high-throughput screening [24–28] approach can analyze a 
large volume of diverse data rapidly to provide important insights that 
cannot be obtained by any other means. It screens the available exper-
imental data based on the value of the surface roughness index and 
makes useful predictions. Specifically, the values of the dimensionless 
surface roughness index corresponding to the one hundred and twenty 
experimental cases for four alloys are estimated. We screen the surface 
roughness index by comparing its computed values with the corre-
sponding experimentally measured surface roughness. The screening 
approach provides a quantitative relation that can be used to reduce the 
surface roughness in printed parts. 

3. Results and discussion 

The formation of rough surfaces is affected by the temperature field 
as well as the geometry and dimensions of the molten pool. Under the 
same process condition, the molten pool shape, size, and temperature 
fields for the PBF-L process (Fig. 3) vary significantly for the four alloys 
used here. It indicates that the four alloys have different susceptibility to 
surface roughness. The results computed using the heat transfer and 
fluid flow model are validated using independent experimental results 
(Fig. 4). The calculated pool depth (Fig. 4 (a)) and pool width (Fig. 4 (b)) 
at different process conditions for four alloys agree well with the cor-
responding experimental results [52–56]. An excellent agreement be-
tween the computed and experimental data provides us the confidence 
to use the heat transfer and fluid flow model to accurately calculate the 

Fig. 3. 3D temperature and velocity distributions calculated using a heat transfer and fluid flow model for four alloys. The results are for 20 mm long single-track 
builds of (a) AlSi10Mg (b) Ti6Al4V (c) Inconel 738 (d) stainless steel 316 made by PBF-L using 60 W laser power, 1000 mm/s scanning speed and 30 μm layer 
thickness and 50 μm beam radius. The scanning direction of the laser beam is along the positive X direction. Y and Z directions represent the width and depth 
direction, respectively. Temperature values of the contour can be predicted from the temperature contour legend provided in each figure. Black arrows in the figures 
represent the velocity vectors whose magnitude can be estimated by comparing lengths with the reference vector provided. 
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causative variables. The causative variables responsible for surface 
roughness can be combined to provide a quantitative index that can be 
used for minimizing surface roughness. However, a prerequisite for 
deriving such an index is that the causative variables should be inde-
pendent of each other. A Pearson’s correlation matrix [51] (see Section 
2.4) shows that all variables have small values of correlation coefficients 
indicating that these variables are independent of each other (Fig. 5). 
These independent causative variables are used to derive a surface 
roughness index, as discussed below. 

3.1. Surface roughness index 

The causative variables (Section 2.2) responsible for causing rough 
surfaces are combined in a dimensionless form using the Buckingham π 
theorem [36] to derive a surface roughness index (SRI) as shown in the 
Appendix as: 

SRI = E t2 (ε)n

̅̅̅̅̅̅̅̅
θ

H F

√

(6)  

where E, t, ε, θ, H, and F are enthalpy of melting (J/m3), layer thickness 
(m), pool aspect ratio (pool length/depth), contact angle (radian), heat 
input (laser power/scanning speed, J/m), and Marangoni force (N). 
These causative variables, their symbols, S.I. units, dimensions, ranges, 
and influence on the surface roughness are provided in Table 1. The 
detailed derivation of the surface roughness index is provided in Ap-
pendix A. A high value of SRI points towards a high susceptibility to 
surface roughness. From Eq. (6), it is evident that a high pool aspect ratio 
results in a rough surface which is also consistent with the experimental 
observations (Fig. 6 (a)). The figure shows that the surface roughness is 
directly proportional to ε0.25, which provides the value of the constant 
‘n’ in Eq. (6) as 0.25. Similarly, the linear proportionality of the surface 
roughness with (1/H)0.5and (1/F)0.5 is also consistent with the experi-
mental data, as shown in Fig. 6 (b) and (c), respectively. Since surface 
roughness decreases at higher values of the heat input (H) and Mar-
angoni force (F) (Section 2.2), these two variables are in the denomi-
nator in Eq. (6). In addition, an increase in enthalpy of melting (E), layer 
thickness (t), and contact angle (θ) enhance the surface roughness 
(Section 2.2). Therefore, these three variables are also in the numerator 
in Eq. (6). 

Fig. 4. Experimental validation of the heat transfer and fluid flow model of 
PBF-L. Comparison between the calculated and experimental measured (a) 
width and (b) depth of the molten pool of a single layer single hatch builds of 
Ti6Al4V, AlSi10Mg, stainless steel 316, and Inconel 738 at different linear heat 
inputs. The experimentally measured width and depth for stainless steel 316 are 
adapted from Di et al. [46] and Li et al. [52], respectively. The experimental 
results for Ti6Al4V and AlSi10Mg are taken from Gong et al. [53] and Kempen 
et al. [54], respectively. Gong et al. [53] and Kempen et al. [54] provided the 
macrograph from which Tang et al. [55] measured the dimensions. The 
experimental results for Inconel 738 are taken from [56]. 

Fig. 5. Pearson’s correlation coefficient matrix showing the inter- 
independence of the causative variables [51]. Details of these causative vari-
ables are provided in Table 1. The values indicate the correlation coefficient 
between variables. The absolute values of the correlation coefficient close to 
zero indicate that the variables are weakly correlated. In contrast, a high 
dependence between two variables is observed if the correlation coefficient 
between them is close to one. 
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Fig. 7 shows that the computed values of SRI for one hundred and 
twenty data points for four alloys follow a linear trend with the corre-
sponding values of experimentally measured surface roughness 
[31,37–49]. Here, the surface roughness (Ra) values are non- 
dimensionalized by dividing them with the corresponding values of 

Fig. 6. Variations of experimentally measured surface roughness (Ra) with the 
causative variables. Variations of surface roughness with (a) pool aspect ratio 
(ε), (b) heat input (H), and (c) Marangoni force (F), and for stainless steel 316 in 
PBF-L. The experimental surface roughness results are taken from [46] where 
average values of surface roughness are reported. 

Fig. 7. Variation of the surface roughness/powder diameter (Ra/D) as a 
function of surface roughness index (SRI). The plot is made using 120 inde-
pendent experimental data for four commonly used alloys. The experimental 
surface roughness results are collected from literature [31,37–49]. The corre-
sponding values of SRI are calculated using Eq. (6). The coefficient of 
4.8 × 10− 3 is a data fitting constant value. The process parameters and material 
properties for surface roughness index calculation for 120 independent exper-
imental data are provided in Tables S1 and S2 in the Supplementary document. 
The R2 value of 0.92 indicates a good linear fitting. 

Fig 8. Relative susceptibilities of alloys to surface roughness. Variation of the 
surface roughness index for the four alloys at various process conditions. Values 
of the surface roughness were calculated for AlSi10Mg, Inconel 738, Ti6Al4V, 
and stainless steel 316 builds using Eq. (7). Three different scanning speeds of 
1000 mm/s, 1100 mm/s, and 1200 mm/s are calculated respectively, with 
powder diameter of 30 μm, laser power of 250 W, the beam diameter of 100 μm, 
and layer thickness of 40 μm. 
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powder diameter (D). Both the surface roughness (Ra) and powder 
diameter (D) have the unit of the meter (Table 1) and their ratio (Ra/D) 
is a dimensionless quantity. The linear fitting (Fig. 7) is expressed by an 
equation as: 

Ra

D
= K × SRI = K E t2 (ε)n

̅̅̅̅̅̅̅̅
θ

H F

√

(7)  

where Ra and D are surface roughness (m) and powder diameter (m), 
respectively. K is the slope of the linear plot (Fig. 7) which is equal to 
0.0048 and the value of the constant n is 0.25. The plot of (Ra/D) vs. SRI 
is a linear plot passing through the origin (Fig. 7) indicating a perfectly 
smooth surface for a value of SRI equals zero. Eq. (7) is valid for the four 
alloys and the range of the variables provided in Table 1. For a new part, 
causative variables are needed to be computed for the corresponding 
processing conditions. Subsequently, those calculated values should be 
used in Eq. (7) to estimate surface roughness. To include a new alloy, Eq. 
(7) needs to be modified by incorporating new experimental data for 
that alloy. The one hundred and twenty experimental surface roughness 
[31,37–49] and corresponding process parameters and calculated 
causative variables are provided in Table S2 in the Supplementary 
document. The surface roughness index (SRI) provides a usable scale to 
compute and compare the values of surface roughness at different pro-
cessing conditions and alloys, as discussed below. 

3.2. Relative susceptibility of alloys to surface roughness 

Fig. 8 compares the computed values of SRI for four commonly used 
alloys, SS316, Ti6Al4V, IN738, and AlSi10Mg at different scanning 
speeds of 1000, 1100, and 1200 mm/s while other process parameters 
are kept constant. For the same process condition, the AlSi10Mg alloy 
has the lowest value of SRI, indicating the least susceptibility to surface 
roughness among the four alloys (Fig. 8). This is primarily attributed to 
the lowest values of pool aspect ratio (Fig. 3) and enthalpy of melting 
(Fig. 2 (f)) of AlSi10Mg among the four alloys. In contrast, high values of 
pool aspect ratio and enthalpy of melting of SS 316 make it the most 
vulnerable to surface roughness among the four alloys (Fig. 8). Fig. 8 
also shows that rapid scanning increases surface roughness for all four 
alloys. This is because rapid scanning reduces the heat input (H) which 
increases the surface roughness (Eq. 7). Similar to the scanning speed, 
other process variables such as laser power, layer thickness, and powder 
diameter also significantly affect the surface roughness. Surface rough-
ness maps showing the variations in surface roughness with these pro-
cess variables can be useful to engineers for predicting the surface 
roughness before experiments, as discussed below. 

3.3. Surface roughness maps 

Computed values of surface roughness (in μm) using Eq. (7) at 
different combinations of processing conditions are used to construct 

(caption on next column) 

Fig. 9. Surface roughness maps for Ti6Al4V for various powder sizes. Surface 
roughness maps show the variations in the surface roughness (Ra) value with 
laser power and scanning speeds for three different powder diameters (a) 20, 
(b) 30, and (c) 40 μm. The layer thickness for all three figures is 40 μm. The 
values on the contour lines represent the values of surface roughness, in μm, 
computed using Eq. (7). The surface roughness results are for 20 mm long 
single-track builds of Ti6Al4V alloy made by PBF-L. Surface roughness values 
increase with increasing scanning speed, decreasing laser power, and increasing 
powder diameter. The trends of the surface roughness maps are consistent with 
the common industrial practice for both fusion welding and additive 
manufacturing. Ranges of process parameters are available in Table 1. The 
process parameters and material properties for surface roughness index calcu-
lation for 120 independent experimental data are provided in Table S2 in the 
Supplementary document. 
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surface roughness maps (Figs. 9 and 10). For each sub-figure, it is 
obvious that the surface roughness values increase with an increase in 
scanning speed or reduction in laser power. Apart from the scanning 
speed and laser power, powder diameter and layer thickness also play 
important roles in determining the surface roughness. In Fig. 9 (a-c), the 
surface roughness increases for larger powder diameter, which agrees 
well with the influence of partial melted powders attachment on surface 
roughness as explained in Table 1. The attachment of the bigger size 
partial melted powders to the molten pool edge shows more difficulty in 
producing a smooth surface. In Fig. 10 (a-c), thicker layers increase the 
surface roughness. The ‘staircase effect’ is more pronounced with a 
larger layer thickness. The surface roughness maps for the other three 
alloys, AlSi10Mg, Inconel 738, and Stainless steel 316 are presented in 
Fig. 11. Once the surface roughness maps are available on the shop floor 
for an alloy, engineers can predict the surface roughness before per-
forming any experiments. From Figs. 8–11, it is evident that the surface 
roughness varies significantly depending on the processing conditions 
and alloys used. The combined effects of processing conditions and alloy 
properties on surface roughness are captured using the causative vari-
ables in Eq. (7). However, these causative variables do not equally 
contribute to creating rough surfaces. Their relative influence on surface 
roughness is very important because it can guide engineers to know 
which variable to adjust to reduce surface roughness, as discussed 
below. 

3.4. Hierarchical importance of causative variables on surface roughness 

To estimate the hierarchy of the importance of the causative vari-
ables on surface roughness, each variable is varied by 20 % of their 
ranges [57] (Table 1) and the variation in the coefficient of determi-
nation (R2) for the linear fitting in Fig. 7 is calculated. The calculated 
values of the new R2 are compared with the original value of R2 (0.92 in 
Fig. 7). The variable with the highest change of R2 (represented in 
percentage change in Fig. 12) shows the highest influence on surface 
roughness. Fig. 12 shows that the heat input and pool aspect ratio are the 
first and second most important variables affecting the surface rough-
ness. Heat input impacts both the amount of liquid and the stability of 
the molten pool, which shows the critical and decisive influence on 
surface roughness. The second important variable, the pool aspect ratio, 
represents the shape, capillary stability, and continuity of the molten 
pool, also shows an important influence on surface roughness. The 
contact angle is found as the least important variable. The contact angle 
is a material property which is a constant value for a specific alloy and is 
very limited to represent the complex mechanisms of evolution of rough 
surfaces. The hierarchy of the importance of the causative variables on 
surface roughness guides the engineers and researchers to identify 
which variables need to be adjusted [58,59] to print parts with smooth 
surfaces using PBF-L. 

(caption on next column) 

Fig. 10. Surface roughness maps for Ti6Al4V for various layer thicknesses. 
Surface roughness maps show the variations in the surface roughness (Ra) value 
with laser power and scanning speeds for three different layer thicknesses (a) 
30, (b) 40, and (c) 50 μm. The powder diameter for all three figures is 30 μm. 
The values on the contour lines represent the values of surface roughness, in μm, 
computed using Eq. (7). The surface roughness results are for 20 mm long 
single-track builds of Ti6Al4V alloy made by PBF-L. Surface roughness values 
increase with increasing scanning speed, decreasing laser power, and increasing 
layer thickness. The trends of the surface roughness maps are consistent with 
the common industrial practice for both fusion welding and additive 
manufacturing. Ranges of process parameters are available in Table 1. The 
process parameters and material properties for surface roughness index calcu-
lation for 120 independent experimental data are provided in Table S2 in the 
Supplementary document. 
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Fig. 11. Surface roughness maps for (a-c) AlSi10Mg, (d-f) IN738, and (g-i) SS316 for various layer thicknesses (t) and powder diameters (D). Surface roughness maps 
show the variations in the surface roughness (Ra) value with laser power and scanning speeds for three different layer thicknesses (t) 30, 40, and 50 μm, three 
different powder diameters (D) 20, 30, and 40 μm. The values on the contour lines represent the values of surface roughness, in μm, computed using Eq. (7). The 
surface roughness results are for 20 mm long single-track builds of AlSi10Mg, IN738, and SS316 alloys made by PBF-L. Surface roughness values increase with 
increasing scanning speed, decreasing laser power, and increasing layer thickness and powder diameter. The trends of the surface roughness maps are consistent with 
the common industrial practice for both fusion welding and additive manufacturing. Ranges of process parameters are available in Table 1. The process parameters 
and material properties for surface roughness index calculation for 120 independent experimental data are provided in Table S2 in the Supplementary document. 
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4. Summary and conclusions 

We derive and propose a dimensionless ‘surface roughness index’ 
during laser powder bed fusion, which is the ratio of the extent of 
roughness divided by the powder diameter. We compute several caus-
ative variables using a rigorously-tested heat transfer and fluid flow 
model of powder bed fusion for one hundred and twenty independent 
experiments with four alloys, SS316, Ti6Al4V, IN738, and AlSi10Mg. 
We analyze the surface roughness index using a high-throughput 
screening method to provide pathways to print smooth surfaces. The 
effectiveness of the method is established using data from independent 

experiments. Below are the specific findings:  

(1) A dimensionless surface roughness index (SRI) is derived and 
validated by one hundred and twenty independent experimental 
data collected from the literature. This dimensionless index 
combines the mechanisms of surface roughness formation, 
including the influence of heat input, powder diameter, layer 
thickness, pool aspect ratio (pool length/depth), Marangoni 
force, contact angle, and enthalpy of melting of alloys on the 
surface roughness.  

(2) The heat input per unit length of the deposit is found as the most 
important variable affecting the surface roughness due to its 
critical importance in determining the amount of liquid and sta-
bility of the molten pool. The pool aspect ratio represents the 
shape and stability of the molten pool and is found as the second 
most important variable.  

(3) AlSi10Mg is the least susceptible to surface roughness among the 
four alloys under the same processing conditions. This is pri-
marily attributed to the lowest values of pool aspect ratio, lowest 
enthalpy of melting, and highest Marangoni force for AlSi10Mg. 
In addition, the stainless steel 316 is the most susceptible alloy to 
surface roughness. 

(4) We provide surface roughness maps for four commonly used al-
loys, SS316, Ti6Al4V, IN738, and AlSi10Mg, using the dimen-
sionless index where the variations in the surface roughness with 
the common PBF-L variables are consistent with the common 
practice in the additive manufacturing industry. 
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Appendix A. The derivation of the surface roughness index (SRI) 

The six causative variables, heat input, layer thickness, pool aspect ratio, Marangoni force, contact angle, and enthalpy of melting, are used to 
derive the dimensionless surface roughness index using the Buckingham π theorem [36]. The other causative variable, powder diameter (D) is used to 
non-dimensionalize the surface roughness where the roughness values are divided by the corresponding powder diameter. Since there are 3 funda-
mental dimensions (M, L, and T) and six variables, there are three (6–3 = 3) π terms. These π terms (π1, π2, and π3) are dimensionless. For the π terms, 
there should be three repeating and three non-repeating variables. The three repeating variables are chosen to be F, t, and H. Applying Buckingham 
π-theorem, the three π terms can be written as, 

π1 = (F)a1 (t)b1 (H)c1 (E) (8)  

π2 = (F)a2 (t)b2 (H)c2 (ε) (9)  

π3 = (F)a3 (t)b3 (H)c3 (θ) (10)  

where the π terms are dimensionless (M0L0Τ0), and the values of the exponents (a, b, and c) for each π term need to be found out by equating the 
dimensions in Eqs. 8, 9, and 10. The three π terms are calculated as, 

π1 =
E t2
̅̅̅̅̅̅̅
HF

√ (11)  

π2 = ε (12)  

π3 = θ (13) 

The surface roughness index (SRI) is represented as: 

Fig. 12. Hierarchical importance of variables on surface roughness. The hier-
archical importance is evaluated by varying each variable by 10 % of their 
ranges (Table 1) and calculating the variation in the coefficient of determina-
tion (R2) for the linear fitting in Fig. 7, and comparing that with the 0.92 (R2 

before variation in Fig. 7). The variable with the highest change of R2 (repre-
sented in percentage change) shows the highest influence on surface roughness. 
The heat input and pool aspect ratio are found as the first and second most 
important variables contributing to the surface roughness. The calculations are 
performed using 120 independent experimental data [31,37–49]. 

Y. Du et al.                                                                                                                                                                                                                                       



Journal of Manufacturing Processes 81 (2022) 65–77

76

SRI = π1(π2)
n ̅̅̅̅̅π3
√

= E t2 (ε)n

̅̅̅̅̅̅̅̅
θ

H F

√

(14) 

where E, t, ε, θ, H, and F are enthalpy of melting (J/m3), layer thickness (m), pool aspect ratio (pool length/depth), contact angle (radian), heat input 
(laser power/scanning speed, J/m), and Marangoni force (N). The value of the exponent ‘n’ is estimated from the linear fitting as 0.25 (in Fig. 6 (a)). 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmapro.2022.06.049. 
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