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Since friction stir welding tools fail in service under various mechanisms, it is difficult to mitigate tool failure
based on mechanistic understanding alone. Here we use multiple machine learning algorithms and a mecha-
nistic model to identify the causative variables responsible for tool failure. We analyze one hundred and four-
teen sets of experimental data for three commonly used alloys to evaluate the hierarchy of causative variables
for tool failure. Three decision tree based algorithms are used to rank the hierarchy of the relative influence of
six important friction stir welding variables on tool failure. The maximum shear stress is found to be the most
important causative variable for tool failure. This is consistent with the effect of shear stress on the load experi-
enced by the tool. The second most important factor is the flow stress which affects the plasticized material
flow around the tool pin. All other variables are found to be significantly less important. Three algorithms also
generate identical results and predict tool failure with the highest accuracy of 98%. A combination of mechanis-
tic model, machine learning and experimental data can prevent tool failure accurately.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In friction stir welding (FSW) process, tools are exposed to high
stresses and temperatures. Temperature fields and stresses on the
tool affect the structure and properties of the joints and in extreme
conditions, results in tool failure that disrupts the joining process
[1�7]. Several mechanisms of tool failure have been reported in the
literature based on welding conditions. Tools experience fluctuating
tensile and compressive loads because of their rotational and transla-
tional motion through the plasticized workpiece. Prolonged exposure
of the tool to high fluctuating stresses may result in fatigue failure
[5]. Since the yield strength decreases with increase in temperature,
tools often deform at high loads and temperatures [8]. Shear failure
occurs when the stresses on the tool pin are higher than its load bear-
ing ability [8]. At high temperatures, alloying elements in the work-
piece may diffuse into the tool and form brittle intermetallic
compounds which weakens the tools [9,10]. The rotational and trans-
lational motions of tool through the hot plasticized material result in
its wear and pronounced wear may also result in tool failure [1,5]. In
practice, FSW tools may fail because of multiple mechanisms and
there is no unified, phenomenological criterion to determine the
most important variables that can be adjusted to prevent tool failure.
Several investigations have been undertaken to identify the condi-
tions for tool failure [8�26]. The improper material flow and overload-
ing of tools at high welding speeds often result in tool failure. Peak
temperature affects the tool properties and is recognized as a factor for
tool durability [11�15]. Discontinuous material flow in the weld nug-
get at high strains and strain rates was reported to be detrimental to
the tool [16�19]. The flow stress was suggested as an important causa-
tive factor for tool breakage since high flow stress indicates difficulty of
material flow [5,20�22]. Improper conditions of material flow that
generate high traverse force, torque and shear stress on the tool have
been suggested as the main reasons for tool failure [1,4,23�28]. Insuf-
ficient heat generation and excessive plunge depth were also thought
to be important factors. Sufficient distance between the tool pin tip
and the bottom surface of work plate was necessary to protect tools
from contacting the work bench and tool failure [1,5]. It was found
that the tool breakage was more common at high weld pitch (welding
speed to rotational speed ratio) [29]. Undesirable hard secondary
phases formed during welding were found to be the main reasons for
tool wear [9,10]. Tools with high fracture toughness, excellent yield
strength and wear resistance at high temperature were suggested to
be helpful to reduce tool failure [11].

The most important causative variables and their hierarchical
influence on tool failure are not available in the literature. Data-
driven machine learning techniques are often beneficial to establish
relations among different sets of variables when phenomenological
relations among them are unavailable [4,30�37]. In data-driven
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machine learning methods, the raw process variables are the most
convenient inputs because they can be obtained easily and recorded
directly during the experiments [38]. In addition, engineers can easily
control these variables in order to achieve desired product attributes
and tool life. However, the raw process variables are distributed over
a very large range in a complex system such as FSWwhere the effects
of individual parameters are concealed by the complexity of plasti-
cized material flow and load on tool that affect the tool failure. There-
fore, use of computed variables rather than raw process variables are
more useful in a multi-variables system like FSW [4]. These complex
variables are often referred as causative variables because they affect
tool failure. The importance of causative variables compared to the
raw individual variables is evident in a parallel, well-recognized
example of fluid flow through a pipe. The raw variables such as the
diameter of the pipe, average velocity, density and viscosity of the
fluid can determine whether the flow is turbulent or laminar [39].
However, the flow behavior is much better indicated by the Reynolds
number than the four individual parameters [39]. Therefore, here we
consider both the raw variables as well as the causative variables that
represent the flow of plasticized material and load on tool. The raw
variables considered here are the welding process parameters, tool
and work plate dimensions and material properties of the work plate.
Since the same tool material, H13 tool steel, is used for these three
aluminum alloys, the tool properties are not included in the raw vari-
ables. The causative variables, temperature, strain rate, flow stress of
plasticized material as well as traverse force, torque and maximum
shear stress on the tool are estimated using a well-tested, 3D, heat
transfer and material flow model [2,42]. The model is rigorously
tested using independent experimental data of temperature field
[43] as well as forces and torques on tools [44] for various welding
conditions. A binary variable is used as output for the machine learn-
ing algorithms: ‘1’ for ‘Broken tool’ and ‘0’ for ‘Safe tool’ output.

Here we train, test and validate neural network (NN) and decision
tree (DT) using both raw and causative variables based on one hun-
dred and fourteen sets of experimental data for three aluminum
alloys, AA2219 [29], AA5083 [40] and AA6082 [41] from peer-
reviewed literature. All experimental data used in this investigation
are for premature tool failure due to improper processing conditions.
The effectiveness of the machine learning algorithms in predicting
tool breakage using the six causative variables is compared with that
using raw welding parameters and alloy properties. The hierarchical
influence of these causative variables on tool failure is also estimated
using three feature selection indexes-based machine learning. How-
ever, the hierarchical influence of the raw variables on tool failure
cannot be estimated because these parameters show nearly the same
effect on tool failure. In other words, if any one of these variables is
kept constant, alteration of the other variables may cause both ‘Safe
tool’ and ‘Broken tool’. Although the method we propose in this
research is applied for the FSW of aluminum alloys, it is equally appli-
cable for the FSW of other alloys such as steels when experimental
data becomes available in the literature.

2. Methodology

The methodology for this research is schematically represented in
Fig. 1. Two types of datasets are used in machine learning as input.
First, the raw unprocessed welding parameters are used that are easy
to measure and available from literature directly. Second, the six
causative variables calculated using a 3D, heat transfer and material
flow model [4,42] are used in the machine learning. Both the sets of
data are for one hundred and fourteen independent experiments on
tool failure adapted from the literature [29,40,41]. Two machine
learning algorithms, neural network (NN) and decision tree (DT)
[4,30,37] are used in this research. The detailed calculations of six
causative variables using the numerical model and machine learning
algorithms are described below.
2.1. Calculations of six causative variables

The six causative variables investigated in this paper are calculated
using a three-dimensional heat transfer and visco-plastic flow model
[2,8,42]. The model solves the equations of conservation of mass,
momentum, and energy in 3D Cartesian coordinate [2,8,42]. The tem-
perature and velocity fields can be computed combined with the
velocity and heat transfer boundary conditions. The strain rate is
defined as the velocity gradient and calculated in the weld nugget
[16]. The flow stress for the plasticized material flow can be computed
with the effective strain rate and temperature field [2]. Since, flow
stress varies spatially in 3D, maximum value of flow stress is used in
machine learning. The spatial variations of fractional slip (d) and the
coefficient of friction (mf ) are estimated based on the rotational speed
and tool geometry [8]. The traverse force is opposite to the welding
direction. FS and FP are the force components experienced by the tool
pin and the shoulder respectively which can be calculated as:

FS ¼
I

d�mf P � dA ð1Þ

FP ¼
I
s � dA ð2Þ

where d andmf are the fractional slip and friction coefficients. P is the
axial pressure. The s is the temperature-dependent yield strength of
the plasticized flow material and dA is the area on the tool that con-
tacted with the plasticized material.

The torque that tool sustains is related to both the sticking torque
and the sliding torque, and the relationship is described in a previous
paper [8]. The torque generated by the shoulder is higher than that
caused by the tool pin because the diameter of shoulder is larger
than that of tool pin [3,8]. With the distribution of force and torque
on the tool pin, the shear stress due to bending and torsion loading
can be computed at any point on the tool pin. The maximum and
minimum principal stresses can be estimated. The variation of maxi-
mum shear stress around the tool pin can be obtained from Tresca’s
criteria described in the literature [1,8].

2.2. Implementation of machine learning

2.2.1. Data classification and oversampling to avoid bias in dataset
One hundred and fourteen sets of independent FSW experimental

data on tool failure of three commonly used aluminum alloys,
AA2219, AA5083 and AA6082 were collected from the peer-reviewed
literature [29,40,41]. Two machine learning approaches [30], neural
network (NN) and decision tree (DT), were employed to classify the
datasets for tool failure. Among all one hundred and fourteen data
points, 91 of themwere ‘Safe tool’marked with ‘0’, and the remaining
23 were ‘Broken tool’marked with ‘1’. For 91 cases of ‘Safe tool’, 55 of
them were selected randomly for the training, 9 for the validation
and the remaining 27 for testing. Oversampling [30] was applied to
increase the number of ‘Broken tool’ cases from 23 to 92 to make the
dataset unbiased. For the 92 cases of ‘Broken tool’, 56 of them were
selected randomly for the training, 9 and 27 were chosen for the vali-
dation and testing respectively. In total, 111 data points were applied
for training, 18 for validation and 54 for testing.

2.2.2. Machine learning algorithms
In the NN, all training data were used to fit a hyperbolic tangent

function by using error back-propagation algorithm that minimizes the
logarithmic error to update the weights linking different layers [37]. The
number of hidden nodes was set to vary from n to 2n (n is the number
of input nodes). The aim of training is to find the best weight matrix
with least error between the predictive response and target response.
The computed best weight matrix was supposed to apply for validation
and testing datasets. The structure and weight matrix for neural



Fig. 1. This schematic outlines the structure of this research. The essential components are FSW process, numerical model and machine learning methods including neural network
and decision tree. Numerical model is used to calculate the six causative variables (a) temperature (b) strain rate (c) traverse force (d) flow stress (e) shear stress (f) torque. The
images of tool in figures (g-j) are taken from the literature [5,9,11].
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network is explained in the Supplementary Information. The outputs of
NN training were continuous values between 0 and 1, which need to be
separated by selecting a proper threshold value. The best value of the
threshold with the highest accuracy in evaluating training output, was
also used to clarify the validation output and testing output. The output
node was estimated using the following function [4,30,37].

y ¼ tanh
Xn

i¼1
wixi þ ui

� �
ð3Þ

where n is the total number of input nodes, wi is the weight between
the input nodes and hidden nodes, xi and y are the input and the out-
put of a node, ui is the bias dependent on the ith input.
There are three commonly used algorithms for making a decision
tree, ID 3, C4.5 and CART (classification and regression tree) that use
three different feature importance indexes, information gain (IG),
information gain ratio (IG ratio) and Gini index, respectively [30].
These three indexes can represent the global feature importance of
six causative variables using all data points. The hierarchical impor-
tance of these six causative variables are ranked by the above-men-
tioned three indexes and a decision tree is generated to predict tool
failure [4,30]. The basic structure of DT is ‘xi >p’ where xi is the root
or child node and p is the threshold value. The selection of threshold
value is as same as the threshold value selection in NN. The best value
of the threshold with the least classification error was selected to
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classify the datasets. For example, for ID 3 algorithm, the selection of
classification nodes were performed based on the information gain
(IG) [30,31]. The variable that had the highest information gain was
selected as the node for each ranking. After the first-time ranking,
select the root node with the highest IG value, and chose the best
threshold value with highest classification accuracy, and then classify
the dataset into two groups with the remaining variables [4,30]. The
above operation needs to be repeated until the leaves of the tree are
reached. The process to construct a decision tree using ID 3 algorithm
is described in the Supplementary Information.

3. Results and discussion

A significant effort was made to correlate the rawwelding variables
with the tool failure. The raw, unprocessed variables include welding
and rotational speeds, axial pressure, tilt angle, shoulder radius, pin
radius, plate thickness, work plate material properties of thermal diffu-
sivity and yield strength. The same tool material, H13 tool steel is used
for all the one hundred and fourteen cases. Therefore, the material
properties of tool material are not included in the raw variables. These
variables corresponding to one hundred and fourteen experiments are
adapted from the literature and are listed in the Supplementary Infor-
mation. The weight matrix for NN using raw weld parameters are pro-
vided in the Supplementary Information. This method predicts tool
failure with an accuracy of 87.0%. This average accuracy in prediction
is primarily attributed to the fact that the raw, unprocessed welding
variables alone are inadequate to explain complex phenomena such as
tool failure in FSW. In many complicated engineering systems, some
complex variables which combine the simultaneous influence of sev-
eral variables are better suited than the raw individual parameters to
represent the behavior of the system. These variables are often termed
as causative variable because they are good representative of the caus-
ative factors of tool failure. Therefore, we used the six potentially
Fig. 2. The schematic of welding process. (a) temperature and velocity fields during FSW of
time curves from calculation and experimental results, monitor location is 13 mm from wel
between the calculated transverse sections of the AA2219 with the corresponding experim
welding speed is 100 mm/min [29]. The yellow dot lines show the edges of the tool pin wit
references to colour in this figure legend, the reader is referred to the web version of this arti
causative variables to try to achieve a significantly improved reliability
in predicting tool failure. Since these causative variables cannot be
recorded in shop floor during experiments, this procedure requires the
calculations of the variables using the heat transfer and material flow
model [2,42]. The calculated results to explain the influence of the six
variables on tool failure and their validations using independent
experimental data are described below.

3.1. Calculated results of six variables and experimental validations

Fig. 2(a) shows the calculated 3D distribution of the temperature
field. The color bands in this figure represent the range of tempera-
tures as indicated in the contour legend. The temperature is the max-
imum near the tool pin and gradually decreases away from the pin.
The isotherms are elongated at the rear side of the tool pin opposite
to the welding direction. This unique temperature distribution affects
both the load generated on the tool and its load bearing ability. For
example, materials at high temperature are more plastic, easy to flow
and therefore generate less load on tool pin [2,5,7]. In contrast, high
temperature degrades the load bearing ability of the pin [1,5,8].
Because of these influences, temperature is considered to be a poten-
tial causative variable for tool failure. To check the accuracy of the
calculated temperature values the computed results are compared
against the independent experimental data. Fig. 2(b) shows that the
computed temperature-time curve shows a good agreement with the
experimental results [43]. In addition, the calculated nugget geome-
try at the transverse (YZ) planes agrees well with the corresponding
experimental results [29] as shown in Fig. 2(c) and (d) for two differ-
ent rotation speeds. These agreements indicate that the temperature
values calculated using the model can be used for machine learning
with confidence.

Although the temperature field can indicate the plasticity of the
material around the pin, it does not directly describe the continuity
AA2024, welding speed 100 mm/min, rotational speed 800 rpm [43] (b) temperature-
ding centerline in advancing side on the top surface of the workpiece [43]. Comparison
entally measured macrographs, rotational speeds are (c) 800 rpm and (d) 1000 rpm,
h radius of 3 mm where the tool pin axis is at width = 0 mm. (For interpretation of the
cle.)
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of the flow. Continuity of the material flow around the pin can be rep-
resented by the strain rate which is quantified as the spatial gradient
of velocity of the flow field. High strain rate may cause discontinuity
in the material flow which may result in abrupt load on tool and tool
failure [4,5,8]. Strain rate of the plasticized material is affected by the
transient velocity distributions around the tool pin. Fig. 3(a) shows
the velocity fields around the tool pin at different horizontal (XY)
planes. The velocity vectors are represented by the arrows whose
magnitudes can be found by comparing their length with the refer-
ence vector provided. Since the plasticized material flow is primarily
driven by the rotational movement of the shoulder, the magnitudes
Fig. 3. Simulation results from numerical model of (a) velocity field in xy planes of
z1=6.19 mm, z2=4.34 mm, z3=2.34 mm from the bottom of the work plate, (b) strain
rate (c) flow stress on the tool pin surface. The processing conditions are taken from
the literature [43]. The welding speed is 100 mm/min, rotational speed is 800 rpm,
diameter of tool pin is 6 mm. ‘AS’ represeants advancing side while ‘RS’ represeants
retreating side.
of the velocities are the highest near the shoulder (Z1 plane). How-
ever, the magnitudes gradually decrease with the distance from the
shoulder. This spatial non-uniformity in the flow field results in strain
rate variations as shown in Fig. 3(b). This figure shows the strain rate
distribution on the vertical surface of the tool pin. The strain rate at
advancing side is higher than that in retreating side, which indicates
the discontinuity in flow from the retreating side to the advancing
side at the back of the tool pin. This discontinuity may cause abrupt
load on tool pin and tool failure in some extreme cases.

The FSW tools face difficulties in stirring material with high flow
stress which may generate high load on the tool pin and result in tool
failure. Flow stress is affected by the temperature field as well as the
strain rate and thus by the velocity field [2,3]. Since both the temper-
ature and velocity fields are spatially non-uniform, the flow stress
field also varies significantly. Fig. 3(c) shows that the flow stress
increases with the radial distance from the central axis of the tool
pin. The material is easy to flowwhen the plasticized material is close
to the tool pin, and the material which is far from the tool pin is more
difficult to flow around. Tool failure is affected by this spatial non-
uniformity in flow stress fields.

From the aforementioned discussions, it is evident that the tem-
perature, strain rate and flow stress represent the material flow
behavior that has significant effects on tool failure. However, tool fail-
ure is also affected by the mechanical loading on the tool represented
by the traverse force, torque and shear stress. For example, the tool
failure is more likely to happen when the tool pin cannot bear the
excessive deformation caused by high traverse force. The traverse
force is calculated and compared with corresponding experimental
results for different welding conditions for aluminum alloys AA7039
and AA7075 as shown in Fig. 4. The agreement between the com-
puted and measured results provides us the confidence to use these
results in machine learning to predict tool failure. Traverse force
increases at low heat input, with reduction in rotational speed and
increase in welding speed. Tool pin has low load bearing ability
because of its smaller diameter than the shoulder. Therefore, the tool
pin is more susceptible to suffer from deformation and failure in
extreme cases compared to the shoulder [1,5].

The tool torque indicates the difficulty suffered by the tool to stir
the material. The welding conditions that generate high torque on
the tool may also cause the separation of different layers of plasti-
cized material resulting in high load on tool and tool failure. The tor-
que is calculated and compared with corresponding experimental
results for different welding conditions for aluminum alloys AA7039
and AA7075 as shown in Fig. 5. The agreement between the com-
puted and measured results of tool torque provides us the confidence
to use these results in machine learning to predict tool failure. The
torque follows the same trend as traverse force which increases at
low heat input. More power is required to stir the same amount of
material at low temperature, which results in high torque and more
deformation and low tool load bearing ability [1,8].

Shear failure of the tool pin may occur if the shear stress on pin
exceeds the shear yield strength of the tool pin material. However,
the shear stress on the tool pin is non-uniform because it is generated
due to a combined effect of bending due to the translation as well as
torsion due to rotation of the tool, both of which vary significantly
[8]. The non-uniformity of shear stress is evident from Fig. 6 where
the variation in shear stress is plotted with the angular distance at a
horizontal plane at the mid height of the tool pin. The figure shows
that the maximum shear stress is found at the retreating side with
90° from welding direction. This location on the tool pin is the most
vulnerable to initiate the shear failure of the pin.

The aforementioned influences of the six causative variables on
tool failure are quantitively summarized in Table 1 by considering a
simple example [29] of FSW of AA2219. Welds at three different rota-
tional speeds, 2.50, 6.67 and 10.00 rps (revolutions per second) are
considered. It was experimentally found that the tool was broken at



Fig. 4. Results of traverse force of experimental measurement and numerical models for with welding speed of 2 mm/s for aluminum alloy (a) AA7039 and (b) AA7075 [44]. The
maximummeasurement error of the experimental results for traverse force is 0.29 kN.

Fig. 5. Comparing the results of torque on tool pin with experimental measurement and numerical model calculations for different welding conditions (a) AA7039 with constant
welding speed of 2 mm/s (b) AA7039 with constant rotational speed of 355 rpm (c) AA7075 with constant welding speed of 2 mm/s (d) AA7075 with constant rotational speed of
355 rpm [44]. The maximummeasurement error of the experimental results for torque is 2.0 Nm.
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the rotational speed of 2.50 rps. In contrast, tool was safe at higher
rotational speeds of 6.67 and 10.00 rps. Six causative variables corre-
sponding to the three welds at different rotational speeds are calcu-
lated using the numerical model and provided in the Table 1. It is
evident from the table that the tool failure can be avoided at high
temperature but low relative stain rate, flow stress, traverse force,
torque and maximum shear stress.

Calculations of six causative variables similar to that presented in
Table 1 are performed corresponding to one hundred and fourteen
experimental cases. The results obtained are used in machine



Fig. 6. Shear stress variation with the angular distance of the tool pin, where 0° indi-
cates the welding direction. The values are taken at the mid-height of the tool pin at
section AA as schematically represented in the inset. The welding speed is 100 mm/
min, rotational speed is 800 rpm. The processing conditions are taken from the litera-
ture [43].

Table 2
Range of unprocessed, raw parameters and causative variables.

Unprocessed parameters Causative variables

Parameters Range Variables Range

Welding speed, m/s 0.00167�0.0183 Peak temperature, K 441.07�789.93
Rotational speed, rps 2.5�21.7 Strain rate, /s 23.16�434.25
Plate thickness, m 0.003�0.00635 Flow stress, MPa 153.55�629.81
Shoulder radius, m 0.005�0.0105 Traverse force, kN 2.31�11.64
Axial pressure, Mpa 13�122 Torque, N*m 13.80�205.58
Pin root radius, m 0.002�0.0035 Maximum shear

stress, MPa
58.74�2666.3

Tilt angle, degree 1�3
Thermal

diffusivity, £ 10�5m2/s4.89�7.13Yield strength, Mpa150�352
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learning to find the hierarchical influence of the six variables on tool
failure as discussed below. The range of unprocessed raw parameters
and six causative variables is listed in Table 2. Raw welding parame-
ters, material properties and calculated six causative variables for
one hundred and fourteen data points are available in the Supple-
mentary Information.

3.2. Hierarchical influence of six variables on tool failure

The calculated results of six causative variables corresponding to all
of the one hundred and fourteen experimental datasets are normalized
and plotted in Fig. 7. In order to avoid effects of composition of differ-
ent aluminum alloys, the data for individual alloy are normalized by
dividing each of the six variables by their maximum values. All data
used in these plots are provided in the Supplementary Information.
These results are used in neural network to evaluate their effectiveness
in predicting tool failure. It is found that the accuracy in prediction of
tool failure is 96.3% which is higher than the prediction accuracy of
87.0% using the raw welding variables as discussed earlier. Therefore,
it is evident that the six causative variables are more effective in fore-
casting tool failure compared to the raw welding variables.
Table 1
Variations in welding parameters and causative variables for different joints. The weld
between the strain rate and the rotation speed in rps.

Broken tool Safe tool

Rotation speed, rps 2.5 6.67
Peak temp., TP, K 602.21 678.98
Relative strain rate, er 2.7 1.5
Flow stress, tf , MPa 150.20 121.10
Traverse force, F , kN 4.17 2.05
Torque,M, Nm 43.81 23.60
Max shear stress, tm , MPa 685.5 557.3
Receiver operating characteristic (ROC) curve and area under ROC
curve (AUC) can show the generalization ability of the model [30]. An
ROC curve is a graph showing the performance of a classification
model at all classification thresholds. This threshold value is used for
the output of neural network to classify the dataset with and without
tool broken. The x-axis shows the false positive rate and the y-axis is
the true positive rate. Both the false positive rate and true positive
rate are explained in the Supplementary Information. The ROC curves
of the neural network using both raw welding parameters and causa-
tive variables are plotted in Fig. 8. The red dotted line is the ROC
curve for random estimations representing a model with 50% accu-
racy for both ‘0’ and ‘1’. AUC value is an important index to show the
model property. The AUC value is a continuous value between 0 and
1, the greater value indicating better model property, and the curve
getting closer to the top left (0,1) point. The curve for causative vari-
able is closer to the (0,1) with AUC of 0.99 comparing to the curve for
raw welding parameters with AUC of 0.97. The neural network feed-
ing with causative variables has better generalization ability com-
pared to that with raw welding parameters.

Although these six variables are found to be effective in predicting
tool failure, their hierarchical influence on tool failure needs to be
evaluated in order to find out which variable among the six should
be tuned in first to mitigate tool failure. Three commonly used feature
selection indexes are applied to evaluate the feature importance for
the six causative variables using all data points, information gain (IG),
information gain ratio (IG ratio) and Gini index. The calculated three
indexes are plotted in Fig. 9. For IG and IG ratio, the index with high-
est value has the most importance in classification. It is because both
IG and IG ratio are calculated based on entropy, and the highest IG
(or IG ratio) with lowest uncertainty of which the corresponding vari-
able is the best for classification. However, for Gini index which
macrographs are taken from literature [29]. Relative strain rate equal to the ratio

Safe tool

10.00
719.74

1.2
110.50

1.41
14.76

503.1



Fig. 7. Normalized calculated results obtained from the numerical model. (a) Peak temperature, (b) relative strain rate (strain rate/rps), (c) flow stress, (d) traverse force, (e) torque,
(f) maximum shear stress [29,40,41]. ‘BT’ represents ‘Broken tool’, ‘ST’ represents ‘Safe tool’. The AA6082 plates with different thickness of 3 and 6 mm were marked with ‘Al 6082-
3’ and ‘Al 6082-6’ respectively.
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represent the impurity, the variable with the least value has the most
influence on data classification. Six causative variables are ranked
with these three feature selection indexes and shown in Fig. 9(a), (b)
and (c). Three indexes all show that the maximum shear stress and
flow stress are the first and second important variables for tool fail-
ure, and the peak temperature is the last important variable for tool
failure.

We also used the calculated values of six variables to construct a
decision tree using three algorithms to predict tool failure. For the
decision-making criteria, threshold values for all six variables are
needed which classify the welding cases into ‘Broken tool’ (BT) and
‘Safe tool’ (ST). The threshold values are indicated by horizontal
dotted lines in Fig. 7. For example, the welds corresponding to the
normalized maximum shear stress higher than 0.88 are prone to the
tool failure. All three algorithms provided exactly the same decision
tree which is shown in Fig. 10. The first and second important varia-
bles on tool failure shown in Fig. 9 are selected as the two classified
nodes in decision tree plotted in Fig. 10. The maximum shear stress is
selected as the root node which is also found as the most important
variable for the tool failure as mentioned before. Flow stress is
selected to be the classify node in the second-time ranking that is
found to be the second important variable that affects tool failure in
Fig. 9. The other four variables, peak temperature, relative strain rate,
traverse force and torque are found to be the less important variables



Fig. 8. Receiver operating characteristic (ROC) curves for neural network using raw
welding parameters and causative variables. The red dotted line is the ROC curve for
random estimations which represents a model with 50% accuracy for both ‘0’ and ‘1’.
ROC curve and area under ROC curve (AUC) can show the generalization ability of the
model. The greater AUC value indicates the curve closer to the top left (1,0) point and
better prediction ability of the neural network. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Results of three feature selection indexes of (a) information gain, (b) informa-
tion gain ratio, and (c) Gini index for six normalized causative variables. These three
indexes indicate the feature importance. For each index, the hierarchical importance of
these six causative variables on tool failure is ranked and shown in this figure. For all
three algorithms, maximum shear stress (tm) and flow stresses (tf ) have been found to
be the two most important variables. However, all three algorithms show that the
peak temperature (TP) has the least influence on tool failure.

Fig. 10. Decision tree with six normalized causative variables for tool breakage classifi-
cation. ‘TB’ represents the conditions for which tools are broken. 'Good' represents the
safe conditions for which tools are not broken. The maximum shear stress (tm) and
flow stress (tf ) are determined as the variables for classification in the decision tree.
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and not selected as nodes in the decision tree, since the influence of
these four variables are included in the maximum shear stress on the
tool pin and flow stress of the plasticized material.

The decision tree can predict tool failure if the values of the causa-
tive variables are known. It is found that the decision tree constructed
here (shown in Fig. 10) can predict tool failure with an accuracy of
98.1% which is better than that using neural network. Therefore, use of
both neural network and decision tree based on the causative variables
are better than using raw variables in predicting tool failure. This is
also evident from the corresponding confusion matrices [30,31] as
shown in Fig. 11. The confusion matrix is applied to show the compari-
son between the predicted results and the target output for each
method. Fig. 11(a) explains the basic structure of the confusion matrix.
The result of the neural network using raw welding parameters is
shown in Fig. 11(b), with an accuracy of 87.0%. The results using the
causative variables for neural network and decision tree are shown in
Fig. 11(c) and (d), with accuracy of 96.3% and 98.1% respectively. The
accuracy, sensitivity and specificity of the three methods are summa-
rized in Table 3. Calculations of the accuracy, sensitivity and specificity
are explained in the Supplementary Information.

4. Summary and conclusions

One hundred and fourteen experimental data sets for three alumi-
num alloys, AA2219, AA5083 and AA6061 were used to identify six
causative variables for tool failure in friction stir welding. The six var-
iables, temperature, traverse force, maximum shear stress, flow
stress, strain rate and torque are calculated using a well-tested heat
transfer and material flow model. Three different decision tree-based
algorithms are used to rank these variables based on their hierarchi-
cal influence on tool failure. Below are the specific findings.

(1) Temperature, traverse force, maximum shear stress, flow stress,
strain rate and torque could be correlated with tool failure based
on a neural network. The neural network could predict tool fail-
ure with a high level of confidence.



Fig. 11. Confusion matrices that compare the predicted output from the machine
learning and the target output obtained from the 114 experimental data, assigning ‘1’
for ‘Broken tool’ and ‘0’ for ‘Safe tool’. (a) The basic construction of a confusion matrix,
results of (b) raw welding parameters using neural network, accuracy=87.0%, (c) causa-
tive variables using neural network, accuracy=96.3% and (d) causative variables using
decision tree, accuracy=98.1%. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 3
Accuracy, sensitivity and specificity of three methods
(1) raw welding parameters using neural network, (2)
causative variables using neural network and (3) causa-
tive variables using decision tree.

Method 1 Method 2 Method 3

Accuracy 87.0% 96.3% 98.1%
Sensitivity 88.9% 96.3% 96.3%
Specificity 85.2% 96.3% 100.0%
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(2) The most important variables for tool failure are found to be
maximum shear stress and flow stress in the order of impor-
tance. The maximum shear stress combines the complicated
influence of bending and torsion stresses on the tool pin and is
an important factor which can cause tool failure. High flow stress
indicates the difficulty in material flow around the tool pin and
may result in high load on tool. Peak temperature is the least
important variable among the six causative variables. Three deci-
sion tree-based algorithms predicted the same hierarchy and
forecasted the tool failure with an accuracy of 98%.

(3) The six computed causative variables are better than the raw,
unprocessed welding variables at forecasting tool failure. The
neural network fed with welding parameters, tool and work
plate dimensions and material properties can predict tool failure
with 87.0% accuracy. In contrast, the neural network using the
causative variables can forecast tool failure with a 96% accuracy.

(4) Local discontinuity in the flow field of the plasticized material due
to low peak temperature and high strain rate may cause abrupt
load on the tool which may result in its failure. Traverse force and
torque are indicators of the difficulty in linear movement of the
tool and the smooth flow of the plasticized material, respectively.
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