Clive Randall

Clive Randall
  • Professor of Materials Science and Engineering
  • Director, Materials Research Institute
N-221 Millennium Science Complex
(814) 863-1328


Clive A. Randall is a Professor of Materials Science and Engineering at The Pennsylvania State University, University Park, Pennsylvania, USA.    He was Director for the Center for Dielectric Studies between 1997 and 2013, and recently formed a new Center as Co-Director, the Center for Dielectrics and Piezoelectrics.  Prof. Randall received a B.Sc. with Honors in Physics in 1983 from the University of East Anglia, and a Ph.D. in Experimental Physics from the University of Essex in 1987, both in the United Kingdom.   He has authored/co-authored over 330 technical papers, with over 10,000 citations and an h-factor of 52.   He also holds 13 patents (with 3 pending) in the field of electroceramics.   Prof. Randall’s research interests are in the area of discovery and compositional design of functional materials for electrical energy transduction and storage, defect chemistry and crystal chemistry and their impact on phase transition behavior, electromechanical devices based upon electrostriction and piezoelectrics, supercapacitors, thermoelectrics, and microwave materials.  He has used a variety of different processing and characterization methods that have impacted manufacturing and development processes for materials, particularly in the capacitor industry.  His research group has been supported from a number of different sources, including the National Science Foundation, the U.S. Air Force Office of Scientific Research, U.S. Department of Energy, the Office of Naval Research, the U.S.-Israel Binational Scientific Foundation, NASA, and substantial funding from the private sector.  Prof. Randall was honored with the American Ceramic Society Fulrath Award in 2002; the Wilson Research Award from the College of Earth and Mineral Sciences, Penn State University, in 2003; he spent one year (2004–2005) as a Visiting Fellow of Fitzwilliam College, University of Cambridge, U.K.; he was elected Fellow of the American Ceramic Society in 2005 and Academician of the World Academy of Ceramics in 2006; in 2007, he and his colleagues received the R&D 100 Award for their Integrated Fiber Alignment Package (IFAP); he received the Spriggs Phase Equilibria Award in 2008; in 2009, he received the University Scholar Award (Engineering) from Penn State University; he received the Japanese FMA International Award;  he gave the Friedberg Lecture at the American Ceramic Society, both in 2011; in 2013, he received, along with his student, the Edward C. Henry Best Paper of the Year from the American Ceramics Society Electronics Division; and he received the IEEE UFFC-S Ferroelectrics Recognition Award (2014).  He is a member of American Ceramic Society, IEEE and the IEEE Ferroelectrics Committee, Materials Research Society, and the Pennsylvania Ceramics Association.

Academic Training

Ph.D. in Experimental Physics, University of Essex
B.S. in Physics, University of East Anglia


Professor Randall utilizes a combination of the material science approaches of structural-property-process-performance relations and coupling these with material physics to understand and design future generation electroceramic materials and devices. Specific materials the group is studying are ferroelectric and related materials, microwave, and piezoelectric materials in a variety of different forms, ranging from crystal structure, composition, particle and grain size, bulk, film and composites are considered.

Our philosophy is to use extreme application needs to direct a fundamental study to enable material advances to be made and implemented. These extreme performance parameters include a combination of temperature, electric field strength, frequency- time and size reduction. Under these conditions, we are concerned with basic mechanisms that control the degradation under all times of use. These time dependent failure mechanisms may be controlled through important physical processes such as electron injection at an electrode or grain boundary, oxygen vacancy migration, defect dipole rotations, thermochemical and electrochemical reactions at interfaces. Any of these or similar phenomena are  built into a material through the fabrication thermal processes  and remain in a metastable state, but  ultimately these defects drive the degradation mechanisms and thereby prevent the implementation of  new materials into a system. Once understanding the sources and failure processes, our group develops methods through process modifications or design new materials or chemistries to suppress these deleterious effects.

The above approach has proven extremely useful in the education of our students, and the research conclusions have attracted collaborations with leading international electroceramic based companies, working on advanced concepts for materials having to work under extreme conditions.

Technology Impacted By Research: 

High frequency high permittivity dielectrics are being implemented into integrated - tunable Microwave Circuits. Piezoelectric materials are being developed for diesel injection systems. High temperature ferroelectrics are being developed for accelerometers and electronic components. Our protocols for characterizing interfacial phenomena in capacitors are being adopted by manufacturers.

Noted Publications:
  1. The XRD and IR Study of the Barium Titanate Nano-powder Obtained via Oxalate Route, A.V. Polotai, A.V. Ragulya, T.V. Tomila, C.A. Randall, et al., Ferroelectrics 298: 243–251 (2004).
  2. Polarization Relaxation Anisotropy in Pb(Zn1/3Nb2/3)O3–PbTiO3 Single-Crystal Ferroelectrics as a Function of Fatigue History, M. Ozgul, E. Furman, S. Trolier-McKinstry, et al., J. Appl. Phys. 95(5): 2631–2638 (2004).
  3. Investigation of a High Tc Piezoelectric System: (1-x)Bi(Mg1/2Ti1/2)O3–PbTiO3, C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, and I.M. Reaney, J. Appl. Phys. 95(7): 3633–3639 (2004).
  4. Influence of Electrical Cycling on Polarization Reversal Processes in Pb(Zn1/3Nb2/3)O3-PbTiO3 Ferroelectric Single Crystals as a Function of Orientation, M. Ozgul, S. Trolier-McKinstry, and C.A. Randall, J. Appl. Phys. 95(8): 4296–4302 (2004).
  5. Characterization of Perovskite Piezoelectric Single Crystals of 0.43BiScO3-0.57PbTiO3 with High Curie Temperature, S.J. Zhang, C.A. Randall, and T.R. Shrout, J. Appl. Phys. 95(8): 4291–4295 (April 15, 2004).